期刊文献+

基于概念格的图书协同推荐研究 被引量:3

Collaborative Recommendation of Digital Books Based on Concept Lattice
原文传递
导出
摘要 提出一种基于概念格的图书协同推荐方法。首先建立用户与图书之间的概念格,然后根据概念格中图书节点之间的继承关系,从下向上回溯用户之间的共同偏好,快速计算用户之间的相似度,以确定目标用户的"最近邻居"。最后通过计算协同推荐值,实现对目标用户推荐其可能感兴趣的图书,从而为图书的协同推荐提供支持。 The method of effectively recommending users books based on concept lattice is proposed in the process of collaborative recommendation of digital library. Firstly, the concept lattice of customers and books is built. Secondly, according to the inheritance relationship of nodes in concept lattice, tile similarity degrees between users can be calculated by searching the common preference between users, and then "nearest neighbors" of the target user can be confirmed. Finally, recommending books can be realized by calculating the collaborative recommendation value.
出处 《图书情报工作》 CSSCI 北大核心 2012年第17期131-135,共5页 Library and Information Service
关键词 数字图书馆协同推荐概念格相似度 最近邻居 digital library collaborative recommendation concept lattice similarity degree nearest neighbor
  • 相关文献

参考文献9

二级参考文献19

  • 1Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52.
  • 2Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70.
  • 3Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186.
  • 4Shardanand U, Mats P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217.
  • 5Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201.
  • 6Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295.
  • 7Chickering D, Hecherman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables.Machine Learning, 1997,29(2/3): 181~212.
  • 8Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977,B39:1~38.
  • 9Thiesson B, Meek C, Chickering D, Heckerman D. Learning mixture of DAG models. Technical Report, MSR-TR-97-30, Redmond:Microsoft Research, 1997.
  • 10Sarwar B, Karypis G, Konstan J, Riedl J. Analysis of recommendation algorithms for E-commerce. In: ACM Conference on Electronic Commerce. 2000. 158~167.

共引文献797

同被引文献120

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部