期刊文献+

流形学习算法在中文文本分类中的应用 被引量:2

The manifold learning algorithm′s application in the Chinese text clustering
原文传递
导出
摘要 传统的流形学习局部线性嵌入(locally linear embedding,LLE)算法通过欧氏距离来选择邻域,如果数据集选自多个类别,这种距离度量方法无法得到正确的邻域关系。本研究提出一种改进的局部线性嵌入(modifiedLLE,MLLE)算法,该算法通过改进距离矩阵,使得类间的距离大、类内的距离小,从而使得邻域的选择尽量在一个类中。将MLLE算法应用到中文文本分类中,结果表明:与传统的算法比较,MLLE在分类结果可视化效果和识别率等方面都有显著提高。 According to the euclidean distance, the original LLE (locally linear embedding) algorithm chooses the neighborhood. If the data was originated from multiple classes, the correct neighborhood relationship could not be ob- tained. In order to solve this problem, an improved MLLE ( modified LLE) was proposed. In MLLE algorithm, the distance matrix was modified, which could make the distance longger between classes and smaller within classes, and so could make the neighborhood in one class as far as possible. The test of Chinese text clustering showed that the MLLE algorithm could improve the clustering visualization and the recognition rate.
出处 《山东大学学报(工学版)》 CAS 北大核心 2012年第4期8-12,共5页 Journal of Shandong University(Engineering Science)
基金 国家自然科学基金资助项目(61070121)
关键词 流形学习 LLE算法 MLLE算法 中文文本分类 manifold learning LLE algorithm MLLE algorithm Chinese text clustering
  • 相关文献

参考文献15

二级参考文献151

共引文献499

同被引文献61

  • 1陈涛,谢阳群.文本分类中的特征降维方法综述[J].情报学报,2005,24(6):690-695. 被引量:79
  • 2中文自然语言处理开放平台[EB/OL].(2002-08-16).[2007-07-11].http://www.nlp.org.cn/project/project.php?proj_id=6.
  • 3LI B, ZHENG C H, HUANG D S. Locally linear discriminant embedding: an efficient method for face recognition [ J]. Pat- tern Recognition, 2008 (41) : 3813-3821.
  • 4ROWELS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding [ J ]. Science, 2000, 290 (5500) : 2323-2326.
  • 5LI H F, JIANG T, ZHANG K S. Efficient and robust feature extraction by maximum margin criterion [ J]. IEEE Transaction on Neural Networks, 2006, 17 (1) : 157-165.
  • 6谭松波,王月粉.中文文本分类语料库-TanCorpVl.0.[EB/OL].[2010-10-15].http://www.search-forum.org.crt/tansongbo/corpus.htm.
  • 7BELHUMEUR P N, HESPANHA J P, KRIEGMAN D J. Eigenfaces vs. fisherfaces: recognition using class specific line- ar projection [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19 (7) : 711- 720.
  • 8MOGHADDAM B, PENTLAND A. Probabilistic visual learn- ing for object representation [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19 (7) : 696-710.
  • 9BAI X M, YIN B C, SHI Q, et al. Face recognition based on supervised locally linear embedding method [ J ]. Journal of In- formation & Computation Science, 2005 (4) : 641-646.
  • 10ALTER O, BROWN P O, BOTSTEIN D. Processing and mod- eling genome-wide expression data using singular value decom- position [ J ]. Progress in biomedical optics and imaging, 2001, 23 (2) : 171- 186.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部