期刊文献+

一类复动力系统的不动点(英文)

Fixed Point of a Complex Dynamic System
下载PDF
导出
摘要 讨论了单位圆盘上的一类积分算子诱导的复动力系统.设f(z)是在单位圆盘(D={︱z︱≤1})上满足f(0)=0的解析函数,定义复Volterra型算子为(If)(z)=∫0zf(t)dt.研究迭代算子(Jf)(z)=(If)(z)/‖If‖∞的性质,得到对任意n,使得Jnf(z)在边界D上一点z0存在唯一不动点的充分必要条件. In this paper it is discussed for a complex dynamic system defined by the iteration of the some kinds of integral operators on the unit disk. Assuming that f(z) is an analytic function satisfying f(0) = 0 on the unit disk (D ={︱z︱≤1}). the Voherra operator is defined by (If)(z)=∫0zf(t)dt.We study the iteration of the operator (Jf)(z)=(If)(z)/‖If‖∞ and obtain some necessary and sufficient conditions that Jnf(z) have a common fixed point z0 on the boundary D for arbitrary n.
作者 葛菁 刘华
出处 《宁夏师范学院学报》 2012年第3期1-8,共8页 Journal of Ningxia Normal University
关键词 积分算子迭代 复动力系统 不动点 Iteration of integral operator Complex dynamic system fixed point
  • 相关文献

参考文献3

  • 1Boas H, Khavinson D. Bohr' s power series theorem in several variables[ J]. Proc. Amer. Math. Soc. , 1997,125 (I0) :2975-2979.
  • 2Pan Y, Wang M. On higher order angular derivatives of harmonic functions in the unit ball-an application of Faadi Bruno's formula [ J ]. Complex Variables and Elliptic Equations,53(2) : 159-175.
  • 3Pommerenke C H. Schlichte functionen und analytische funktionen yon beschraenkter mittlerer oszillation [ J ]. Commmentarii Mathematici Helvetici, 1977,52:591- 602.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部