摘要
讨论了单位圆盘上的一类积分算子诱导的复动力系统.设f(z)是在单位圆盘(D={︱z︱≤1})上满足f(0)=0的解析函数,定义复Volterra型算子为(If)(z)=∫0zf(t)dt.研究迭代算子(Jf)(z)=(If)(z)/‖If‖∞的性质,得到对任意n,使得Jnf(z)在边界D上一点z0存在唯一不动点的充分必要条件.
In this paper it is discussed for a complex dynamic system defined by the iteration of the some kinds of integral operators on the unit disk. Assuming that f(z) is an analytic function satisfying f(0) = 0 on the unit disk (D ={︱z︱≤1}). the Voherra operator is defined by (If)(z)=∫0zf(t)dt.We study the iteration of the operator (Jf)(z)=(If)(z)/‖If‖∞ and obtain some necessary and sufficient conditions that Jnf(z) have a common fixed point z0 on the boundary D for arbitrary n.
出处
《宁夏师范学院学报》
2012年第3期1-8,共8页
Journal of Ningxia Normal University
关键词
积分算子迭代
复动力系统
不动点
Iteration of integral operator
Complex dynamic system
fixed point