期刊文献+

苏打盐碱土对氮转化的影响 被引量:6

Effects of Saline-Alkali Soil on Nitrogen Transformations
下载PDF
导出
摘要 以苏打盐碱土中的主要成分NaHCO3作为主要影响因素,通过室内培养方法,研究不同苏打盐碱化条件对氮的吸附、矿化、硝化及反硝化作用的影响。结果表明,在不同NaHCO3质量浓度影响下:NH4+-N吸附符合Langmuir吸附等温式;矿化模型符合一阶动力学方程,随着NaHCO3质量浓度的增大,潜在矿化势(M0)和矿化速率常数(km)分别由358.48mg/kg和0.088d-1降低到337.08mg/kg和0.059d-1;硝化作用符合'S'形曲线模型,随着NaHCO3质量浓度的增大,最大速率(kmax)由22.56mg/(kg.d)降低到16.68mg/(kg.d);反硝化作用符合零阶动力学方程,但NaHCO3与Na2CO3混合质量浓度变化对反硝化速率常数(kd)影响不显著。随着NaHCO3质量浓度的增大,苏打盐碱土中NH4+-N吸附、有机氮矿化和硝化作用均受到抑制。 The main component NaHCO3 was considered as the main factor in Soda saline-alkali soil in order to study the effects of different soda salinization levels on nitrogen adsorption, mineralization, nitrification and denitrification by using laboratory incubation. The results showed that in the experimental conditions with the different NaHCO3 concentrations, the NH+ --N adsorptions obeyed Langmuir linear adsorption isotherm, while, the N mineralization could be described by the first-order kinetic equation. With the increasing of NaHCOa concentration, the N mineralization potential (M0) and mineralization rate constant (km) decreased from 358. 48 mg/kg and 0. 088 d^-1 to 337.08 mg/kg and 0. 059 d^-1, respectively, and the nitrification could be described by "S" curve model, the maximal rate of nitrification (kmax) decreased from 22. 56 to 16. 68 mg/(kg · d); the denitrification obeyed zero-order kinetic equation, and there was no significant effect of mixed concentrations variation of NaHCOa and Na2CO3 on the denitrification rate constant (kd). NH4+ -N adsorption, organic nitrogen mineralization and nitrification were inhibited with NaHCO3 concentrations increasing in soda saline-alkali soil.
出处 《吉林大学学报(地球科学版)》 EI CAS CSCD 北大核心 2012年第4期1145-1150,共6页 Journal of Jilin University:Earth Science Edition
基金 国家自然科学基金项目(41102146) 国家水体污染控制与治理科技重大专项课题(2008ZXD7207-006-02)
关键词 苏打盐碱土 吸附作用 硝化作用 反硝化作用 动力学 soda saline-alkali soil nitrogen adsorption nitrification denitrification kinetics
  • 相关文献

参考文献12

  • 1梁秀娟,肖长来,盛洪勋,孟晓路,李生海,赵峰.吉林市地下水中“三氮”迁移转化规律[J].吉林大学学报(地球科学版),2007,37(2):335-340. 被引量:46
  • 2Pathak H,Rao D L N. Carbon and Nitrogen Minerali- zation from Added Organic Matter in Saline and Alkali Soils[J]. Soil Biology Biochemistry, 1998, 30(6): 695 -702.
  • 3Inubushi K, Barahona M A, Yamakawa K. Effects of Salts and Moisture Content on N2O Emission and Ni- trogen Dynamics in Yellow Soil and Andosol in Model Experiments[J]. Biology and Fertility of Soils, 1999, 29(4):401-407.
  • 4Badia D. Potential Nitrification Rates of Semiarid Cropland Soils from the Central Ebro Valley, Spain [J]. Arid Soil Research and Rehabilitation, 2000, 14 (3): 281 - 291.
  • 5王龙昌,玉井理,永田雅辉,长友由隆.水分和盐分对土壤微生物活性的影响[J].垦殖与稻作,1998(3):40-42. 被引量:39
  • 6李建兵,黄冠华.NaCl对粉壤土氨挥发及硝化、反硝化的影响[J].农业环境科学学报,2006,25(4):945-948. 被引量:19
  • 7李建兵,黄冠华.盐分对粉壤土氮转化的影响[J].环境科学研究,2008,21(5):98-103. 被引量:34
  • 8徐万里,刘骅,张云舒.新疆盐渍化土壤氮素矿化和硝化作用特征[J].西北农林科技大学学报(自然科学版),2007,35(11):141-145. 被引量:20
  • 9Stanford G, Smith S J. Nitrogen Mineralization Poten- tials of Soils[J]. Soil Science Society of America Jour- nal, 1972, 36(3): 465-472.
  • 10Sabey B R, Frederick L R, Bartholomew W V. The Formation of Nitrate from Ammonium Nitrogen in Soils: III :Influence of Temperature and Initial Popu lation of Nitrifying Organisms on the Maximum Rate and Delay Period[J]. Soil Science Society of America Journal, 1959, 23(6): 462- 465.

二级参考文献63

共引文献173

同被引文献123

引证文献6

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部