期刊文献+

不同偏压温度下非对称三势垒透射系数的模拟计算 被引量:1

Simulations on Asymmetric Three-barrier Transmission Coefficients under Different Bias and Temperatures
下载PDF
导出
摘要 非对称多势垒可获得比双势垒更大的共振隧穿电流及更良好的峰谷比。通过分析单电子对任意势垒透射的理论模型,建立了任意非对称三势垒模型,研究了不同偏压和温度对透射系数的影响,并得出结论,为进一步设计非对称量子器件提供理论指导。 Asymmetric multi-barrier can obtain larger resonant tunneling current and better peak-valley ratio than double barrier. By analyzing the theoretical models of single-electron transmission on any harrier, an arbitrary asymmetric three-barrier model was established. Effects of different bias and temperatures on the transmission coefficient were studied. It provides a theoretical guidance for the further design of asymmetric quantum devices.
出处 《半导体光电》 CAS CSCD 北大核心 2012年第4期540-543,599,共5页 Semiconductor Optoelectronics
基金 中北大学电子测试技术国家重点实验室青年基金资助项目 中北大学校青年基金资助项目
关键词 偏压 温度 非对称三势垒 透射系数 量子阱 bias temperature non-symmetric three-barrier transmission coefficient quantum wells
  • 相关文献

参考文献4

二级参考文献19

  • 1李存志,刘云鹏,罗恩泽,梁昌洪.粒子在n个一维方势垒中的共振隧穿[J].西安电子科技大学学报,1997,24(2):261-266. 被引量:1
  • 2L Esaki,R Tsu.Superlattice and negative differential conductivity in semiconductors[J].IBM J Res Dev,1970,14:61-65.
  • 3R Tsu,L Esaki.Tunneling in a finite superlattice[J].Appl Phys Lett,1973,22:562-564.
  • 4L L Chang,L Esaki,R Tsu.Resonant tunneling in semiconductor double barriers[J].Appl Phys Lett,1974,24:593-595.
  • 5A Chandra,L F Eastman.Quantum mechanical reflection at triangular "planar-doped" potential barriers for transistors[J].J Appl Phys,1982,53:9165-9169.
  • 6B Ricco,M Y Azbel.Physics of resonant tunneling:The one-dimensional double-barrier case[J].Phys Rev B,1984,29:1970-1981.
  • 7D N Christodoulides,et al.Analytical calculation of the quantum-Mechanical transmission coefficient for a triangular,planar-doped potential barrier[J].Solid-State Elec,1985,28:821-822.
  • 8M C Payne.Transfer Hamiltonian description of resonant tunnelling[J].J Phys C:Solid State Phys,1986,19:1145-1155.
  • 9J Heremans,D L Partin,P D Dresselhaus,et al.Tunneling through narrow-gap semiconductor barriers[J].Appl Phys Lett,1986,48:644-646.
  • 10W W Lui,Masao Fukuma.Exact solution of the Schrodinger equation across an arbitrary one-dimensional piecewise-linear potential barrier[J].J Appl Phys,1986,60:1555-1559.

共引文献5

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部