摘要
本文研究时标上正弦动力学方程的平衡点稳定性和分岔现象.研究表明随时标参数的变化,正弦动力学方程展现出完全不同的解,会产生n倍周期分岔和平衡点分裂等特有现象.同时,不增加系统参数,仅改变时标的复杂性就能扩展动力学方程处于混沌状态的参数空间,这为时标上动力学方程在混沌加密和雷达波形设计等领域的应用提供了潜在的优势.
A time scale is a nonempty closed subset of the real numbers R. Recently, the dynamic equations on time scale laave recewed mucla attention, which have the generalized forms of differential and differential dynamic equations. In this paper, we study the stabilities of fixed points and bifurcations of the sine dynamic equations on time scale. The results show that the solutions of the sine dynamic equations become different with the time scale parameter changing. And n-period-doubling bifurcations and splits of fixed points are observed. Moreover, the chaotic parameter spaces of the dynamic equations are expanded by the increase of complexity of time scale but without increasing the system parameter, thus providing a potential advantage for chaos encryption, radar waveform design and other application areas.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2012年第17期76-87,共12页
Acta Physica Sinica
基金
国家自然科学基金(批准号:61071163
61001151)
南京航空航天大学科研启动金
南京航空航天大学基本科研业务费专项科研项目(批准号:NS2010096)
航空科学基金(批准号:2009ZC52038
2008ZC52026)资助的课题~~
关键词
正弦映射
分岔
混沌
时标动力学方程
sine map, bifurcation, chaos, dynamic equations on time scales