期刊文献+

时标正弦动力学方程稳定性与分岔分析 被引量:1

Stabilities and bifurcations of sine dynamic equations on time scale
原文传递
导出
摘要 本文研究时标上正弦动力学方程的平衡点稳定性和分岔现象.研究表明随时标参数的变化,正弦动力学方程展现出完全不同的解,会产生n倍周期分岔和平衡点分裂等特有现象.同时,不增加系统参数,仅改变时标的复杂性就能扩展动力学方程处于混沌状态的参数空间,这为时标上动力学方程在混沌加密和雷达波形设计等领域的应用提供了潜在的优势. A time scale is a nonempty closed subset of the real numbers R. Recently, the dynamic equations on time scale laave recewed mucla attention, which have the generalized forms of differential and differential dynamic equations. In this paper, we study the stabilities of fixed points and bifurcations of the sine dynamic equations on time scale. The results show that the solutions of the sine dynamic equations become different with the time scale parameter changing. And n-period-doubling bifurcations and splits of fixed points are observed. Moreover, the chaotic parameter spaces of the dynamic equations are expanded by the increase of complexity of time scale but without increasing the system parameter, thus providing a potential advantage for chaos encryption, radar waveform design and other application areas.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2012年第17期76-87,共12页 Acta Physica Sinica
基金 国家自然科学基金(批准号:61071163 61001151) 南京航空航天大学科研启动金 南京航空航天大学基本科研业务费专项科研项目(批准号:NS2010096) 航空科学基金(批准号:2009ZC52038 2008ZC52026)资助的课题~~
关键词 正弦映射 分岔 混沌 时标动力学方程 sine map, bifurcation, chaos, dynamic equations on time scales
  • 相关文献

参考文献28

  • 1Schell M, Fraser S, Kapral R 1983 Physical Review A 28 373.
  • 2Chirikov B V 1979 Physics reports 52 263.
  • 3Huberman B A 1980 Appl. Phys. Lett. 37 750.
  • 4Winfree A T 2001 The geometry of biological time(New York: Springer) p101.
  • 5Larger L, Udaltsov V S, Poinsot S 2005 Journal of optical technology 72 378.
  • 6Jie X, Ke-Ping L, Dani Le F 2010 Chinese Physics Letters 27 020504.
  • 7Tarasov V E, Edelman M 2010 Chaos: An Interdisciplinary Journal of Nonlinear Science 20 023127.
  • 8Arnol'd V I 1961 Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 25 21.
  • 9Feigenbaum M J, Kadanoff L P, Shenker S J 1982 Physica D: Nonlinear Phenomena5 370.
  • 10Ruelle D, Takens F 1971 Commun. Math. Phys. 20 167.

同被引文献19

  • 1Lorenz E N. The essence of chaos [ M ]. London, UK:Houtledge,1993.
  • 2Stewart I. Mathematics;The Lorenz attractor exists[ J] .Nature,2000,406(6799) :948-949.
  • 3Rossler 0 E. An equation for continuous chaos [ J ].Physics Letters A,1976,57(5) :397-398.
  • 4Chen Guanrong, Ueta T. Yet another chaotic attractor[J ] .International Journal of Bifurcation and Chaos,1999,9(7) :1465-1466.
  • 5Lv Jinhu, Chen Guanrong. A new chaotic attractorcoined [ J ]. International Journal of Bifurcation andChaos,2002,12:659-661.
  • 6Lv Jinhu,Chen Guanrong,Cheng Daizhan,et al. Bridgethe gap between the Lorenz system and the Chensystem [ J ]. International Journal of Bifurcation andChaos in Applied Sciences and Engineering, 2002,12(12):2917-2926.
  • 7Wu Xiangjun, Wang Hui. A new chaotic system withfractional order and its projective synchronization [ J ].Nonlinear Dynamics,2010,61 (3) :407-417?.
  • 8Qi Guoyuan, Du Shengzi, Chen Guanrong, et al. On afour-dimensional chaotic system[ J] . Chaos Solitons &Fractals ,2005,23(5); 1671-1682.
  • 9Li Chunbiao, Sprott J C. Amplitude control approachfor chaotic signals [ J ]. Nonlinear Dynamics, 2013,73(3) :1335-1341.
  • 10Chen Yuming, Yang Qigui. A new Lorenz-typehyperchaotic system with a curve of equilibria [ J ].Mathematics and Computers in Simulation,2014,112:40-45.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部