期刊文献+

高斯涡旋光束的光束传输因子和峭度参数 被引量:1

The beam propagation factor and the kurtosis parameter of a Gaussian vortex beam
原文传递
导出
摘要 基于强度二阶矩定义,导出了高斯涡旋光束光束传输因子即M^2因子的解析表达式,高斯涡旋光束的M^2因子唯一取决于拓扑电荷数n.数值计算表明,高斯涡旋光束的M^2因子随着拓扑电荷数n的增大而增大.基于强度高阶矩,还导出了高斯涡旋光束经傍轴ABCD光学系统传输时峭度参数的解析表达式,高斯涡旋光束的峭度参数取决于拓扑电荷数n、参数δ、矩阵元A和矩阵元D.在自由空间传输时,高斯涡旋光束的峭度参数仅取决于拓扑电荷数n和参数δ.自由空间传输时,高斯涡旋光束峭度参数的变化规律为:峭度参数随参数δ的增大先减小而后趋向于一最小值,随拓扑电荷数n的增大而减小.这一研究有助于高斯涡旋光束的实际应用. Based on the definition of the second-order moment of intensity, the analytical expression for the beam propagation factor, namely the M2 factor, of a Gaussian vortex beam is derived, which is uniquely determined by the topological charge n. The numerical result indicates that the M2 factor of a Gaussian vortex beam increases with the increase of topological charge n. By means of the higher-order moment of intensity, the analytical expression for the kurtosis parameter of a Gaussian vortex beam passing through a paraxial ABCD optical system is also presented, which depends on topological charge n, parameter δ, transfer matrix elements A and D. When propagating in free space, the kurtosis parameter of a Gaussian vortex beam is determined by topological charge n and parameter δ. With the increase of parameter δ, the kurtosis parameter of a Gaussian vortex beam in free space first decreases and finally tends to a minimal value. Moreover, the kurtosis parameter of a Gaussian vortex beam in free space decreases with the increase of topological charge n. This research is helpful for the practical application of the Gaussian vortex beam.
作者 周国泉
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2012年第17期232-237,共6页 Acta Physica Sinica
基金 国家自然科学基金(批准号:10974179 61178016)资助的课题~~
关键词 高斯涡旋光束 M^2因子 峭度参数 Gaussian vortex beam, M^2 factor, kurtosis parameter
  • 相关文献

参考文献1

二级参考文献9

  • 1Nemoto S. Nonparaxial Gaussian beams[J]. Appl Opt, 1990,29(13) = 1940 1946.
  • 2Vaveliuk P, Ruiz B, Lencian A. Limits of the paraxial approximation in laser beams[J]. Opt Lett, 2007,32(8)..927-929.
  • 3Gawhary O E, Severini S. Degree of paraxiality for monochromatic light beams[J]. Opt Lett, 2008,33(12): 1360.
  • 4Gawhary O E, Severini S. Localization and paraxiality of pseudo-nondiffracting fields[J]. Opt Commun, 2010,283(12): 2481 -2487.
  • 5Zhou G Q. Change of the paraxiality of a Gaussian beam diffracted by a circular aperture[J]. Opt Express, 2009, 17(10) : 8417-8422.
  • 6Wang F,Cai Y J,Korotkova O. Degree of paraxiality of a partially coherent field[J]. J Opt Soc Am A, 2010,27(5): 1120-1126.
  • 7Zhang L, Wang F, Cai Y J, et al. Degree of paraxiality of a stochastic electromagnetic Gaussian Schell-model beam[J]. Opt Commun, 2011, 284(5) : 1111-1117.
  • 8Bagini A, Borghi R, Gori F, et al. Propagation of axially symmetric flatted Gaussian beams[J]. J Opt Soc Am A, 1996,13(7) : 1385-1394.
  • 9崔学才,连校许,吕百达.高斯涡旋光束的傍轴度[J].强激光与粒子束,2011,23(5):1163-1166. 被引量:2

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部