期刊文献+

线性磁性分子离子中由激光诱导的超快自旋转移

Laser-induced ultrafast spin transfer in linear magnetic molecular ions
原文传递
导出
摘要 通过由激光诱导的A进程,很多分子磁性体系中涉及的退磁、自旋翻转或自旋转移过程在理论上得以实现.本文针对具有线性构型的磁性分子离子,应用量子化学从头计算与自编程序相结合的方法,实现了具有线性构型的双磁性中心分子体系[Fe-O-Co]^+中基于A进程的超快自旋转移,且电子占据的转移率达到90%以上.本文的理论研究结果表明,采用改变磁场方向的方法来增强体系的磁晶各向异性,可以避免为提高自旋转移能力而额外增加桥接原子在实际应用中的复杂性,同时也可明显提高电子占据的转移率. The demagnetization, spin switching, and spin transfer in magnetic molecular systems can be theoretically achieved via the laser-induced Λ process. In the present work, both quantum chemistry ab initio calculations and our self-written programs are adopted to investigate the spin-transfer behavior of the magnetic molecular ions with linear configuration. It is shown for the first time that the Λ process based ultrafast spin transfer can be achieved in a linear two-magnetic-center molecular ion [Fe-O-Co]+, and the fidelity of the population transfer exceeds 90%. The present theoretical prediction shows that the magnetocrystalline anisotropy of a molecular system can be enhanced by properly adjusting the direction of the applied magnetic field, which is shown to be a better way to improve the spin-transfer ability of the molecular system than by increasing additional bridging atoms since it could avoid the complexity of the latter situation in practical applications. At the same time, the present spin-transfer scenario indicates that the fidelity of the population transfer could also be evidently increased.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2012年第17期502-507,共6页 Acta Physica Sinica
基金 国家自然科学基金(批准号:11002109) 高等学校博士学科点专项科研基金(批准号:20106102120028) 西北工业大学基础研究基金“翱翔之星”计划资助的课题~~
关键词 线性磁性分子离子 A进程 超快自旋转移 第一性原理方法 linear magnetic molecular ions, A process, ultrafast spin transfer, first-principles method
  • 相关文献

参考文献25

  • 1Beaurepaire E, Merle J C, Daunois A, Bigot J Y 1996 Phys. Rev. Lett. 76 4250.
  • 2Koopmans B, Ruigrok J J M, Dalla Longa F, de Jonge W J M 2005 Phys. Rev. Lett. 95 267207.
  • 3Chovan J, Kavousanaki E G, Perakis I E 2006 Phys. Rev. Lett. 96 057402.
  • 4Koopmans B, Malinowski J, Dalla Longa F, Steiauf D, F?hnle M, Roth T, Cinchetti M, Aeschlimann M 2010 Nat. Mater. 9 259.
  • 5Zhang G P, Hübner W, Lefkidis G, Bai Y, George T F 2009 Nat. Phys. 5 499.
  • 6Bigot J Y, Vomir M, Beaurepaire E 2009 Nat. Phys. 5 515.
  • 7Boeglin C, Beaurepaire E, Halté V, López-Flores V, Stamm C, Pontius N, Dürr H A, Bigot J Y 2010 Nature 465 458.
  • 8郭立俊, Jan-Peter Wüstenberg, Andreyev Oleksiy, Michael Bauer, Martin Aeschlimann. 2005 物理学报 54 3200.
  • 9Sukhov A, Berakdar J 2009 Phys. Rev. Lett. 102 057204.
  • 10Atxitia U, Chubykalo-Fesenko O, Chantrell R W, Nowak U, Rebei A 2009 Phys. Rev. Lett. 102 057203.

二级参考文献11

  • 1谭中伟,曹继红,陈勇,刘艳,宁提纲,简水生.低串扰的多波长光纤光栅色散补偿器[J].物理学报,2007,56(1):274-279. 被引量:3
  • 2Elrefaie A F, Wagner R E, Atlas D A, Daut D G 1988 Lightwave Technology, Journal (6) 704.
  • 3Seeds A J, Williams K J 2006 J. Lightwave Technol. 24 4628.
  • 4Capmany J, Novak D 2007 Nat Photon 1 319.
  • 5Chen J, Lin C T, Shih P T, Jiang W, Dai Jr. S P, Lin Y M, Peng P C, Chi S 2009 J. Opt. Netw. 8 188.
  • 6Jianjun Y, Zhengsheng J, Yi L, Su Y, Gee-Kung C, Ting W 2006 Photonics Technology Letters IEEE 18 265.
  • 7Lira C, Attygalle M, Nirmalathas A, Novak D, Waterhouse R 2006 Microwave Theory and Techniques IEEE Transactions on $4 2181.
  • 8Attygalle M, Lira C, Pendock G J, Nirmalathas A, Edvell G 2005 Photonics Technology Letters IEEE 17 190.
  • 9Toda H, Yamashita T, Kuri T, Kitayama K, in Microwave Photonics 2003 MWP 2003 Proceedings. International Topical Meeting on, 2003, 287-290.
  • 10许鸥.2009.博士学位论文.北京交通大学.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部