期刊文献+

混合信号振声源分离与多机组故障诊断 被引量:2

Separation for Vibration and Acoustic Compound Signals and Multi-unit Fault Diagnosis
下载PDF
导出
摘要 针对机房设备混合信号难以提取有用信息,提出了多参数的振声诊断方法。应用最小互信息梯度下降的盲分离算法,通过展开边缘熵和修正四阶累积量估计值的方法改善算法性能,在故障源数量未知且可能大于传感器数量的情况下,根据信息源之间的独立性测度关系依次提取最显著的特征值。仿真结果证明,改进算法估计误差减小且算法可靠。在诊断实例中,首先,分离机房内的混合噪声信号以确定主要故障来源;然后,采集故障源的振动信号进行非线性盲分离,提取热泵机组压缩机不对中、齿轮啮合不良和碰磨的故障特征;最后,根据分离的振源信号特征识别故障类型,建立基于盲源分离算法的大空间设备群的振声诊断方法。 A diagnostic method based on vibration and acoustic signals is presented in order to resolve the problem of extraction and separation for the compound signals in an equipment room. The minimum mutually information gradient descent method is applied based on blind separation algorithm, and the algorithm performance is improved through the revision of fourth-order cumulative estimating value. When the quantity of fault sources is unkown, or more than the quantity of sensors, the most remarkable characteristics are extracted according to the independence relation between the information sources. The simultation product is proved that improved algorithm is reliable because the estimation error is reduced. In the diagnosis example, the acoustic signals are firstly separated in an equipment room to determine the major failure sources. And then vibration signals collected from these fault sources are processed based on non-linear blind separation model. The fault feathers are extracted including misalign, meshing failure and wearing fault from compressor of the heat pump. Finally, the fault types are recognized according to the separated signal features from vibration and accoustic signals. And the vibration and accoustic diagnosis method is established for multi-units in the big space based on blind source separation algorithm.
出处 《振动.测试与诊断》 EI CSCD 北大核心 2012年第4期619-623,690-691,共5页 Journal of Vibration,Measurement & Diagnosis
基金 国家自然科学基金资助项目(编号:50975180 51005159) 辽宁省教育厅基金资助项目(编号:L2010401)
关键词 信号处理 故障诊断 振动源 声源 盲源分离 设备机房 signal processing, fault diagnosis, vibration source, acoustic source, blind source separation, equipment room
  • 相关文献

参考文献10

  • 1周勃,陈长征,费朝阳.基于改进Bussgang算法的多机组故障诊断仿真和试验[J].机械工程学报,2009,45(11):106-112. 被引量:3
  • 2刘婷婷,任兴民.独立分量分析在机械振动信号分离中的应用[J].振动.测试与诊断,2009,29(1):36-41. 被引量:16
  • 3张金玉,黄先祥,谢伟达.机械信号处理的BSS算法及其比较研究[J].振动工程学报,2008,21(4):409-416. 被引量:8
  • 4苏中元,贾民平.周期平稳信号盲源分离算法及其应用[J].机械工程学报,2007,43(10):144-149. 被引量:7
  • 5Boustany R. A subspace method for the blind extrac- tion of a cyclostationary source: application to rolling element bearing diagnostics [J]. Mechanical Systems and Signal Processing, 2005,19 : 1245-1259.
  • 6Roan M J, Erling J G, Sibul L H. A new non-linear adaptive blind source separation approach to gear tooth failure detection and analysis [J]. Mechanical Systems and Signal Processing, 2007,16 : 719-740.
  • 7Roan M J, Erling J G, Sibul L H. A new non-linear adaptive blind source separation approach to gear tooth failure detection and analysis [J]. Mechanical Systems and Signal Processing, 2007,16 :719-740.
  • 8Massoud B Z, Christian J. A general approach for mutual information minimization and its application to blind source separation[J]. Signal Processing, 2005, 85:975-995.
  • 9Ihm B C, Park D J. Blind separation of sources using higher-order eumulants[J]. Signal Processing, 1999, 73:267-276.
  • 10Peled R, Braun S, Zacksenhouse M. A blind deconvo- lution separation of multiple sources, with application to bearing diagnostics [J]. Mechanical Systems and Signal Processing, 2005,19 : 1181-1195.

二级参考文献31

  • 1李舜酩.转子振动故障信号的盲分离[J].航空动力学报,2005,20(5):751-756. 被引量:30
  • 2贾民平.周期平稳故障信号分析[J].东南大学学报(自然科学版),2006,36(3):346-350. 被引量:2
  • 3胥永刚,李强,王正英,王太勇.基于独立分量分析的机械故障信息提取[J].天津大学学报,2006,39(9):1066-1071. 被引量:21
  • 4张庆,徐光华,王晶,梁霖.基于支持向量域描述的多故障诊断动态模型[J].西安交通大学学报,2007,41(5):593-597. 被引量:12
  • 5Hyvarinen A, Karhunen J,Oja E. Independent component analysis [M]. [S.l. ]: John Wiley and Sons, 2001.
  • 6Li Zhinong, He Yongyong, Chu Fulei. Application of the blind source separation in machine fault diagnosis:a review and prospect [J]. Mechanical Systems and Signal Processing, 2005,19 (1) : 1-24.
  • 7Han S H, Kirn H H, Bae H D. Extraction of rotating machine sources for fault diagnostics using independent component analysis[C]// IEEE, Instrumentation and Measurement Technology Conference. Ottawa, Ontario, Canada:[s.n.], 2005:1 507-1 512.
  • 8Alexander Y, Amir L, Robert P W D. Blind separation of rotating machine source: bilinear forms and convolutive mixtures [J]. Neurocomputer,ICA/BSS, 2002 (SI) : 349-368.
  • 9Bishop C M. Neural networks for pattern recognition [M]. Oxford: Oxford University Press, 1995.
  • 10Lee T W. Independent component analysis: theory and applications[M]. [S. l. ]:Kluwer Academic Publisher, 1998.

共引文献29

同被引文献10

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部