期刊文献+

基于峭度的一种RobustICA算法 被引量:2

Robust Independent Component Algorithm Based on Kurtosis
下载PDF
导出
摘要 介绍了由V. Zarzoso and P. Comon提出的一种新的基于峭度的独立成分分析算法RobustICA(Robust Independent Component Analysis),并比较了和FastICA在收敛性和信号质量方面的不同。该算法的主要优点在于可以选取最佳步长,可以选取任何不为零的独立成分,并且解决盲分离信号排序问题,同时提升当信号存在坏点和伪局部极值点时的鲁棒性。仿真实验结果表明了该算法相对于FastICA算法减少了迭代次数和加快了收敛速度,同时在小样本空间下均方误差SMSE也明显优于FastICA算法。 Robust Independent Component Analysis based on Kurtosis is presented by V.Zarzoso and P.Comon is introduced in this paper,The difference in astringents and signal quality are compared with FastICA.The algorithm is the main advantage is that can optimal step-size,can choose any nonzero independent component,and solves the separation signal order,at the same time,improves the robustness when a signal is present saddle point and pseudo local extreme value point.The results show that the algorithm can reduce the iteration times and speed up the convergence speed compared with FastICA,at the same time,The SMSE of RobustICA is significantly better than FastICA in the small sample space.
出处 《电脑开发与应用》 2012年第8期13-15,共3页 Computer Development & Applications
关键词 独立成分分析 峭度 步长 鲁棒性 均方误差 ICA kurtosis step-size robustness SMSE
  • 相关文献

参考文献7

  • 1Tugnait J K. Identification and Deconvolution of Multichannel Linear Non-Gaussian Processes using Higher Order Statistics and Inverse Filter Criteria[J]. IEEE Trans. Signal Process, 1997,45 (3) : 658-672.
  • 2Koldovsky Z,Tichavsky P,Oja E. Efficient Variant of Algorithm FastICA for Independent Component Analysis Attaining the Cramr-Rao Lower Bound[J].IEEE Trans. Neural Netw, 2006,17 (5) : lZ65-1277.
  • 3Li H, Adali T. A Class of Complex ICA Algorithms Based on the Kurtosis Cost Function [J]. IEEE Neural Netw, 2008,19 (3) : 408-420.
  • 4Zarzoso V,Comon P. Analysis. I3S Lab. , CNRS, Sophia Anti Robust Independent Component Univ. Nice-Sol: polis, France, 2 Available: http://www, i3s. unice 2009-09-02. hia Antipolis, 009 [J/OL]. fr/ mh/RR/.
  • 5Zarzoso V,Comon P. Robust Independent Component Analysis for Blind Source Separation and Extraction with Application in Eleetro-cardiography[D]. In Proc. 30th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Vancouver, BC, Canada, 2008 : 3344-3347.
  • 6Press W H, Teukolsky S A,Vetterling W T, et al. Numerical Recipes in C [M]. Cambridge, U. K. : Cambridge Univ. Press, 1992.
  • 7Hyvarinen A. Fast and Robust Fixed-point Algorithms for Independent Component Analysis [J ]. IEEE Trans. Neural Netw,1999,10(3):626-634.

同被引文献20

  • 1廖灿辉,陈绍贺.利用数字调制信号特征的卫星同频混合信号盲分离[C]//第七届卫星通信新技术通信业务年会.北京:中国通信学会卫星通信委员会,2011:350-362.
  • 2Hyvarinen A.Karhunen J.oja E.lndependent Component Analysis[M].New York:John wiley & Sons,2001.
  • 3Hyvarinen A,Karhunen J,Oja E.Independent Component Analysis[M].New York:John Wiley & Sons2001.
  • 4Hyvarinen A,Oja E.A fast fixed-point algorithm for nade- pendent component analysis [ J ]. Neural Computation, 1997,9(7):1483-1492.
  • 5Zarzoso V, Comon P. Robust independent component analysis for blind source separation and extraction with application in electrocardiography [C ].//In proc. EMBC- 2008,30th Annual International Conference of the IEEE Enghaeering in Medichae ahd Biology Society,Vancouver, BC,Canada,2008:3344-3347.
  • 6Zarzoso V, Comon P. Robust Independent Component Analysis by Iterative Maximization of the Kurtosis Con- trast With Algebraic Optknal Step Size[J].Neural Net- works,2010,21 (2):248-261.
  • 7Hyvarmen A.Fast and robust fixed-point algorithms for independent component analysis [J]. IEEE Transactions on Neural Networks,1999,10(3):26-634.
  • 8Baloch S H,Krim H,Genton M G.Robust independent component analysis [ J ]. Statistical Signal Processing, 2005,13:61-64.
  • 9Zarzoso V,Comon P.Robust Independent Component Analysis by Iterative Maximization of the Kurtosis Contrast with Algebraic Optimal Step Size[J]. IEEE Transactions on Neural Networks,2010,21 (2):948-261.
  • 10姚文坡.基于健壮独立分量分析及其改进方法的胎儿心电信号提取的研究[D].南京:南京邮电大学,2013.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部