期刊文献+

模拟失重对大鼠血液电阻率频谱特性的影响 被引量:2

Effect of simulated weightlessness on resistivity spectrum characteristics of rat blood
下载PDF
导出
摘要 目的利用电阻抗法观察模拟失重大鼠血液电阻率变化并探讨其机制。方法实验动物分为正常对照组和模拟失重组,模拟失重采用大鼠尾部悬吊法。血液阻抗谱测量采用Agilent4294A阻抗分析仪完成。在0.01~100MHz频率范围选取80个频率点,设定每个频率点自动循环扫描测量3次取均值,交流激励信号源电压0.5V。通过Bode图、Nyquist图和Nichols图的数据分析,观察模拟失重对大鼠血液电阻率频谱特性的影响。结果血液电阻率降低:模拟失重组的低频复电阻率幅值|ρ^*|0、高频复电阻率幅值|ρ^*|m、复电阻率幅值增量(△|ρ^*|=|P’|0-|ρ^*|m)、相位角峰值θp幅度、低频复电阻率实部值ρ^*0、复电阻率虚部峰值P^Hp幅度、低频复电阻率幅值对数lg|ρ^*|0较对照组均降低。血液特征频率:第一特征频率fc1,和第二特征频率fc2较对照组均增加。结论模拟失重引起大鼠血浆、红细胞膜和血红蛋白的电阻率降低,导电性能增加。 Objective To observe the changes in blood resistivity of simulated weightlessness rat by electrical impedance method and to discuss its mechanism. Methods Experimental animals were divided into normal group and simulated weightlessness group. Simulated weightlessness was achieved with the method of tail-suspension. The impedance spectroscopy of blood was measured with Agilent 4294A impedance analyzer over the frequency of 0.01 - 100 MHz, and 80 frequency points in this frequency range were selected, each frequency point automatically scan measured three times to take the mean (AC excitation signal source voltage: 0.5 V). The simulated weightlessness on blood resistivity spectral characteristics was observed by the Bode diagram, the Nyquist diagram and the Nichols diagram. Results The resistivity of the simulated weightlessness rat blood decreased, mainly in the low-frequency limiting value of the complex resistivity amplitude | ρ^* |0, the high-frequency limiting value of complex resistivity amplitude |ρ^* | , complex resistivity amplitude increment (△|ρ^*|=|P'|0-|ρ^*|m ) , the amplitude of phase angle peak θp, the low- frequency limiting value of the real part of complex resistivity ρ'0, the peak amplitude of the imaginary part of complex resistivity ρ^*, and the amplitude logarithmic of complex resistivity at the low-frequency limitinglg |ρ^*| 0 all decreased compared with those of the control group. The 1st and 2nd characteristic frequencies of blood (fc1 and fc2) increased respectively compared with the control group. Conclusions Simulated weightlessness might decrease the resistivity and increase the conductivityof the plasma, red cell and hemoglobin.
机构地区 宁波大学医学院
出处 《北京生物医学工程》 2012年第4期366-371,共6页 Beijing Biomedical Engineering
基金 宁波市自然科学基金(2010A610074)资助
关键词 模拟失重 血液 电阻率频谱 simulated weightlessness blood resistivity spectroscopy
  • 相关文献

参考文献19

  • 1Smith SM. Red blood cell and iron metabolism during spaceflight[ J]. Nutrition, 2002,8(10) :864 -866.
  • 2Aoki K, Ogawa Y, lwasaki K, et al. Approach to elucidating the influences and factors affecting circulation system in humans in space environment[ J]. Nippon Eiseigaku Zasshi, 2011,66 ( 3 ) : 568 -572.
  • 3陈建和,沈羡云,孟京瑞,向求鲁,齐淑玲,刘津华.模拟失重对兔红细胞形态及生成的影响[J].航天医学与医学工程,1995,8(4):282-285. 被引量:6
  • 4张红,陈斌,李红毅,朱德兵,白树民,董海胜,刘军莲.活性水对模拟失重大鼠血液流变学的影响[J].食品科技,2010,35(3):85-87. 被引量:2
  • 5郭凯,胡华碧,陈琳,魏冀,马慧.二十二碳六烯酸和二十碳五烯酸对对模拟失重大鼠红细胞膜流动性的影响[J].细胞与分子免疫学杂志,2009,25(9):844-846. 被引量:4
  • 6沈羡云,王林杰.我国失重生理学研究进展[J].航天医学与医学工程,2008,21(3):182-187. 被引量:25
  • 7Plett PA,Abonour R, Frankovitz SM, et al. Impact of modeled microgravity on migration, differentiation, and cell cycle control of primitive human hematopoietic progenitor ceils [ J ]. Exp Hematol, 2004, 32(8): 773-781.
  • 8Malahov MV, Melnikov AA, Vikulov AD. Bioimpedance spectroscopy parameters of suspensions of young and old erythrocytes[J]. Fiziol Cheloveka,2011 ,37(3) :132-134.
  • 9Malakhov MV, Nikolaev DV, Smirnov AV, et al. Evaluation of blood hematological and biochemical parameters by bioimpedance spectroscopy[ J]. Klin Lab Diagn ,201 l, 1 ( 1 ) :20 -23.
  • 10陈杰,马进,丁兆平,等.一种模拟长期失藿影响的大鼠尾部悬吊模型[J].空问科学学报,1993,13(2):159-162.

二级参考文献104

共引文献45

同被引文献19

  • 1许建平,鲁勇军.人脑胶质瘤和周围组织介电性能研究[J].中国神经肿瘤杂志,2003,1(1):17-20. 被引量:1
  • 2吴小明,董秀珍,秦明新.人大脑组织复电阻抗频率特性及其等效电路模型(英文)[J].中国临床康复,2005,9(24):244-246. 被引量:2
  • 3Wen PY, Kesari S. Malignant gliomas in aduhs [ J ]. New England Journal of Medicine, 2008,359 (5) :492-507.
  • 4Heinz-Georg Jahnke, Axel Heimann, Ronny Azendorf, et al. Impedance spectroscopy-An outstanding method for label-free and real-time discrimination between brain and tumor tissue in vivo [ J ]. Biosensors and Bioelectronics Proteomics, 2013,10 ( 4 ) : 731-748.
  • 5Christina Skourou, Andreas Rohr, P Jack Hoopes, et al. In vivo EIS characterization of tumour tissue properties is dominated by excess extracellularfluid[J]. Physics in Medicine and Biology, 2007, 52 (2) :347-363.
  • 6Querido D, Phillips MR. Changes in the resistive and reactive components of abdominal impedance during the 1-21 day post- mortem periods in rats[ J]. Forensic Science International, 1997, 85(3) :163-175.
  • 7Cole KS. Electric phase angle of cell membranes[ J]. The Journal of General Physiology, 1932,15 ( 6 ) : 641-649.
  • 8Lin Xin, Dong Xiuzben, Fu Feng. Study on changes of characteristic parameters of biological tissues impedance spectroscopy in vitro within 5 to 360 min after excision at the frequency range from 1 Hz to 1 MHz [ C ] . 27th Annum International Conference of the IEEE- EMBS, Engineering in Medicine and Biology Society,2006 : 1123-1126.
  • 9Kosterich JD. Dielectric permittivity and electrical conductivity of fluid saturated bone [ J ]. Biomedical Engineering, IEEE Transactions on, 1983,30:81-86.
  • 10Owenler F. Dielectric permlttivity of geologic Materials at different water contents-Measurements with an impedance analyzer [C ] . Advanced Ground Penetrating Radar (IWAGPH), 2011 6th International Workshop on, 2011.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部