期刊文献+

基于改进遗传算法的网格任务调度 被引量:6

On grid task scheduling based on modified genetic algorithm
下载PDF
导出
摘要 为在网格环境下完成任务调度,使服务运行时间和费用2个指标达到最优化,将这2个指标作为网格任务调度模型的衡量指标,将计算经济模型引入网格资源管理,改进了遗传算法。算法中的染色体编码采用间接编码方式,对每个任务占用的资源编码,即实数编码方法。生成初始种群时采用随机生成种群和根据某些先验知识生成种群这2种方法相结合,变异操作时根据原来染色体的适应值和适应度函数进行有目的的随机变异。通过网格仿真平台GridSim对该算法进行模拟验证,并将其与简单遗传算法及GridSim中经济模型下时间最优算法DBC_Time比较,试验结果证明,其能较好完成网格环境下任务的调度,实现时间和费用双目标优化。 To obtain the optimization in cost and time together in task scheduling on Grid environment,the cost and time factors were taken into account as measurement index in grid task scheduling model,and the computational economy model was introduced into grid resource management.Then a modified genetic algorithm was proposed.In the algorithm,chromosome coding was optimized with indirect coding that resource of each task was initialized through real number coding.Original population was generated via stochastic method together with priori knowledge,and purposeful mutation operation was implemented according to fitness value of old chromosome and fitness function.Finally,the algorithm was compared with simple genetic algorithm and DBC(Deadline and Budget Constrained) time optimization scheduling algorithm by simulating in GridSim,a grid simulation platform.It is proved that the modified genetic algorithm can complete the task scheduling in grid environment effectively,achieving the objective of optimizing scheduling time and running cost.
出处 《解放军理工大学学报(自然科学版)》 EI 北大核心 2012年第4期388-392,共5页 Journal of PLA University of Science and Technology(Natural Science Edition)
基金 国家863计划资助项目(2006AA10Z237)
关键词 遗传算法 网格 任务调度 经济模型 genetic algorithm grid task scheduling economic models
  • 相关文献

参考文献8

  • 1郑美光,胡志刚,张凯.网格环境下基于序贯博弈的性能-效率平衡型优化[J].华南理工大学学报(自然科学版),2010,38(1):92-96. 被引量:2
  • 2BUYYA R, ABRAMSON D, GIDDY J. An economic driven resource management architecture for global computational power grids [C]. Las Vegas: The 2000 International Conference on Parallel and Distributed Processing Techniques and Applications, 2000.
  • 3BUYYA R, ABRAMSON D, GIDDY J, et al. Eco- nomic models for resource management and scheduling in grid computing. Special issue on grid computing en- vironments[J]. The Journal of Concurrency and Com- putation Practice and Experience (CCPE), 2002, 14, (13-15) : 1507-1542.
  • 4DORIGO M, STUTZLE T. The ant colony optimiza- tion metaheuristic., algorithms, applications, and ad- vances [C]//Handbook of Metaheuristics, Norwell: Kluwer Academic Publishers, 2002.
  • 5BRAUN T D, SIEGEL H J, BECK N. A comparison of eleven static heuristics for mapping a class of inde- pendent tasks onto heterogeneous distributed compu- ting systems[J]. Journal of Parallel and Distributed Computing, 2001, 61(6): 810-837.
  • 6FOSTER I, KESSELMAN C. The grid2:blueprint for a new computing infrastructure[M]. San Francisco: Morgan Kaufmann Publishers Inc, 2004.
  • 7BUYYA R, Manzur Murshed. GridSim.. a toolkit for the modeling and simulation of distributed resource management and scheduling for grid computing [J]. The Journal of Concurrency and Computation: Practice and Experience, 2002,14(13-15) : 1175-1220.
  • 8BUYYA R, Murshedm, Abramsond. A deadline and budget constrained cost-time optimization algorithm for scheduling task farming applications on global grids [C]. Las Vegas:The 2002 International Conference on Parallel and Distributed Processing Techniques and Applications PDPTA'02, 2002.

二级参考文献14

  • 1李志洁,程春田,黄飞雪,李欣.一种基于序贯博弈的网格资源分配策略[J].软件学报,2006,17(11):2373-2383. 被引量:27
  • 2Foster I, Kesselman C. The grid2: blueprint for a new computing infrastructure [ M ]. San Francisco: Morgan Kaufmann, 2004 : 45 - 63.
  • 3Berman F, Chien A, Cooper K, et al. The GRADS project : software support for high-level grid application development [ J ]. International Journal of High Performance Computing Applications ,2001,15 (4) :327-344.
  • 4Deelman E, Blythe J, Gil Y, et al. Mapping abstract complex workflows onto grid environments [ J ]. Journal of Grid Computing,2003,1 ( 1 ) :25-39.
  • 5Furmento N, Lee W, Mayer A, et al. ICENI : an open grid service architecture implemented with Jini [ C ] //Proceedings of ACM/IEEE Super Computing Conference. Baltimore : IEEE ,2002 : 1-10.
  • 6Weng Chu-ling, Lu Xin-da. Heuristic scheduling for bagof-tasks applications in combination with QoS in the computational grid [ J ]. Future Generation Computer Systems,2005,21 (2) :271-280.
  • 7Dogan A, Ozguner F. On QoS-based scheduling of a metatask with multiple QoS demands in heterogeneous computing [ C]//Proceedings of International Symposium on Parallel and Distributed Processing. Fort Lauderdale: IEEE, 2002:50-55.
  • 8Kwok Y K, Hwang K, Song S. Selfish grids : game-theoretic modeling and NAS/PSA benchmark evaluation [ J]. IEEE Transactions on Parallel and Distributed Systems, 2007, 18(5) :621-636.
  • 9Ghosh P, Roy N, Sajal K D, et al. A game theory based pricing strategy for job allocation in mobile grids [ C]// Proceedings of International Symposium on Parallel and Distributed Processing. Santa Fe : IEEE,2004:82-91.
  • 10Schindler S, Kapferer W, Wilfried D, et al. Metal enrichment processes in the intra-cluster medium [ J ]. Astronomy and Astrophysics ,2005,435:25-28.

共引文献1

同被引文献65

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部