期刊文献+

关于交换的弱归~*-半环的研究

On commutative weak inductive *-semirings
下载PDF
导出
摘要 研究了交换的弱归纳*-半环S上的二阶方阵半环S2×2.给出S2×2仍为弱归纳的一个充分条件.即若S2×2是λ-半环,则S2×2是弱归*-半环.应用这一结果可以证明S上的二元仿射映射存在最小的联立不动点,部分回答了相关文献中的公开问题. The semiring S2×2 of 2 × 2 matrices over a commutative weak inductive *-semiring S is studied.It is shown that if 2 × 2 is a λ-semiring then it is a weak inductive *-semiring again.Then the least simultaneous fixed points of two binary affne maps over S are given. 更多还原
出处 《纯粹数学与应用数学》 CSCD 2012年第4期540-545,共6页 Pure and Applied Mathematics
基金 国家自然科学基金(11101330) 陕西省自然科学基金青年基金(2011JQ1007)
关键词 λ-半环 *-半环 矩阵半环 最小联立不动点 λ-semiring; *-semiring; matrices semirings; least simultaneous fixed points
  • 相关文献

参考文献8

  • 1冯锋,柳晓燕.弱归纳*-半环上仿射映射的联立不动点(英文)[J].数学进展,2008,37(3):283-290. 被引量:2
  • 2Tarski A. A lattice-theoretical fixpoint theorem and its applications [J]. Pacific Journal of Mathematics, 1955,5:285-309.
  • 3Davis A, A characterization of complete lattices[J]. Pacific Journal of Mathematics, 1955,5:311-319.
  • 4Abian A, Brown A. A theorem on partially ordered sets with applications to fixed point theorems [J]. Canadian J. of Math., 1961,13:173-174.
  • 5Golan J. The Theory of Semirings, with Applications in Mathematics and Theoretical Computer Science[M]. Harlow: Longman Scientific and Technical, 1992.
  • 6Esik Z, Kuich W. Inductive *-semirings [J]. Theoretical Computer Science, 2004,324:3-33.
  • 7Conway J. Regular Algebra and Finite Machines[M]. London: Chapman and Hall, 1971.
  • 8Feng F, Zhao X,Jun Y. B semirings and semirings [J]. Theoretical Computer Science, 2005,347:423-431.

二级参考文献12

  • 1[1]Bloom,S.L.,Esik Z,Matrix and matrical iteration theories,part I,J.Comput.System Sci.,1993,46:381-408.
  • 2[2]Bloom,S.L.,Esik Z,Iteration Theories:the Equational Logic of Iterative Processes,EATCS Monographs on Theoretical Computer Science,Berlin:Springer,1993.
  • 3[3]Bloom,S.L.,Esik Z,The equational logic of fixed points,Theater.Comput.Sci.,1997,179:1-60.
  • 4[4]Conway,J.H.,Regular Algebra and Finite Machines,London:Chapman and Hall,1971.
  • 5[5]Davey,B.A.,Priestly,H.A.,Introduction to Lattices and Order,Cambridge:Cambridge University Press,1990.
  • 6[6]Esik,Z.,Kuich,W.,Inductive *-semirings,Theoret.Comput.Sci.,2004,324:3-33.
  • 7[7]Feng F.,Zhao X.Z.,Jun Y.B.,*-μ-semirings and *-λ-semirings,Theoret.Comput.Sci.,2005,347:423-431.
  • 8[8]Golan,J.S.,Semirings and Affine Equations over Them:Theory and Applications,Dordrecht:Kluwer,2003.
  • 9[9]Goldstern,M.,Vervollstandigung yon Halbringen,Diploma Thesis,Technical University of Vienna,1985.
  • 10[10]Kozen,D.,On Kleene algebras and closed semirings,Proc.MFCS'90,Lecture Notes in Computer Science,vol.452,Rovan (Ed.),Berlin:Springer,1990,26-47.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部