期刊文献+

压力和温度对用于燃料电池的微型反应器内甲烷自热重整特性的影响 被引量:3

Influences of Pressure and Temperature on Characteristics of Auto-thermal Reforming of Methane in Microreactors Used for Fuel Cells
下载PDF
导出
摘要 采用CHEMKIN化学反应动力学软件及计算流体力学软件CFD等数值方法详细探讨了在微尺度内甲烷自热重整反应中温度和压力对出口组分摩尔分数的影响和催化壁面总积碳量的影响.结果表明,当温度超过873 K,会促进水煤气转化反应的发生,导致氢气减少、水和一氧化碳增加,用于燃料电池的微型反应器内甲烷自热重整的温度不宜超过1000K,此时重整合成气中氢气的摩尔分数可达54.05%,一氧化碳的摩尔分数为9.98%;从能效、积炭和燃料电池的原料气的要求分析,用于燃料电池的微型反应器内甲烷自热重整的反应压力应低于1.8105Pa;同时在1000K左右,积炭过程和消炭过程可到达一个平衡阶段,有利于催化剂寿命的延长。 Chemical reaction kinetics model and computational fluid dynamics software were used to study the mole fraction of components in outlet and the total carbon deposition in catalytic wall with the influence of temperature and pressure on micro-scale auto-thermal reforming reaction of methane. The results show that if the temperature is higher than 873 K, it will promote the occurrence of water gas shift reaction and lead to decrease of hydrogen and increase of water and carbon monoxide. The temperature of auto-thermal reforming reaction of methane in micro-reactor used in fuel cell should not be higher than 1 000 K. On this condition, the mole fraction of hydrogen in reforming syngas can reach 54.05% and the mole fraction of carbon monoxide is 9.98%. Based on energy efficiency, carbon deposition and the requirements of feed gas of fuel cell, it indicates that the pressure of auto-thermal reforming reaction of methane in micro-reactor used in fuel cell should be lower than 1.8×10^5 Pa. At the same time when the temperature is about 1 000 K, carbon deposition process and carbon elimination process can reach an equilibrium state, which is benefit to prolong catalyst life.
出处 《中国电机工程学报》 EI CSCD 北大核心 2012年第26期65-71,148,共7页 Proceedings of the CSEE
基金 国家自然科学基金项目(50906103)~~
关键词 微型反应器 燃料电池 甲烷自热重整 压力 温度 积炭 micro-reactor fuel cell methane auto-thermal reforming pressure temperature carbon deposition
  • 相关文献

参考文献22

  • 1Spadaccini C M, MehraA, Zhang X, et al. High power density silicon combustion systems for micro gas turbine engines[J]. ASME Journal of Engineering for Gas Turbines and Power. 2003, 125(7): 709-719.
  • 2Jang L Q, Zhao D Q, Guo C M, et al. Experimental study of a plat-flame micro combustor burning DME for thermoelectric power generation[J]. Energy Conversion and Management, 2011, 52(1): 596-602.
  • 3Byung-il C, Yong-shik H, Myung-bae K, et al. Experimental and numerical studies of mixing and flame stability in a micro-cyclone combustor[J]. Chemical Engineering Science, 2009, 64(24): 5276-5286.
  • 4Shi L, Bayless D J, Prudich M E. A CFD model of autothermal reforming[J]. International Journal of Hydrogen Energy, 2009, 34(18): 7666-7675.
  • 5冉景煜,胡建红,张力,唐强.微细腔内甲烷湿空气预混催化重整产氢特性[J].中国电机工程学报,2007,27(8):42-48. 被引量:12
  • 6Ding O L, Chan S H. Water-gas shift assisted autothermal reforming of methane gas - transient and cold start studies[J]. International Journal of Hydrogen Energy, 2009, 34(1): 270-284.
  • 7Nahar G A. Hydrogen rich gas production by the autothermal reforming of biodiesel(FAME)for utilization in the solid-oxide fuel cells: A thermodynamic analysis[J]. International Journal of Hydrogen Energy, 2010, 35(17): 8891-8911.
  • 8李军伟,钟北京.微细直管燃烧器的散热损失研究[J].中国电机工程学报,2007,27(20):59-64. 被引量:14
  • 9闫云飞,张力,冉景煜.催化壁面对微型燃烧腔内甲烷燃烧影响的数值模拟[J].重庆大学学报(自然科学版),2009,32(10):1159-1164. 被引量:2
  • 10Inyong K, Joongmyeon B. Autothermal reforming study of diesel for fuel cell application[J]. Journal of Power Sources, 2006, 159(2): 1283-1290.

二级参考文献57

共引文献33

同被引文献43

  • 1纪红兵,谢俊锋,陈清林,林维明.耦合甲烷部分氧化与二氧化碳重整的研究进展[J].天然气化工—C1化学与化工,2005,30(6):41-46. 被引量:11
  • 2纪红兵,黄莉,谢俊锋,陈清林.耦合甲烷部分氧化与二氧化碳重整用镍系催化剂碱金属与碱土金属改性研究[J].天然气化工—C1化学与化工,2006,31(1):5-10. 被引量:7
  • 3冉景煜,胡建红,张力,唐强.微细腔内甲烷湿空气预混催化重整产氢特性[J].中国电机工程学报,2007,27(8):42-48. 被引量:12
  • 4Ferreira Ana C,Ferraria AM,Do Rego AM,et al.Partialoxidation of methane over bimetallic copper-cerium oxidecatalysts[J].Journal of Molecular Catalysis A:Chemical,2010,320(1-2):47-55.
  • 5De Los Rios Castillo T,Salinas G J,Lopez O A,et al.Global kinetic evaluation during the reduction of C0WO4with methane for the production of hydrogen[J].International Journal of Hydrogen Energy,2013,38(28):12519-12526.
  • 6Rafiq M H,Jakobsen H A,Hustad J E.Modeling andsimulation of catalytic partial oxidation of methane tosynthesis gas by using a plasma-assisted gliding arcreactor[J].Fuel Processing Technology,2012(101):44-57.
  • 7Tzanetis K F,Martavaltzi C S,Lemonidou A A.Comparative exergy analysis of sorption enhanced andconventional methane steam reforming[J].InternationalJournal of Hydrogen Energy,2012,37(21):16308-16320.
  • 8Wulf C,Kaltschmitt M.Life cycle assessment ofhydrogen supply chain with special attention on hydrogenrefueling stations.International[J].Journal of HydrogenEnergy,2012,37(21):16711-16721.
  • 9Akbari M H,Ardakani A H,Sharaflan Tadbir M.Amicroreactor modeling,analysis and optimization formethane autothermal reforming in fuel cellapplications[J].Chemical Engineering Journal,2011,166(3):1116-1125.
  • 10Avila-Neto C N,DantasSC,Silva F A,et al.Hydrogenproduction from methane reforming:Thermodynamicassessment and autothermal reactor design[J].Journal ofNatural Gas Science and Engineering,2009,1(6):205-215.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部