期刊文献+

使用日夜两用型红外摄像机进行火焰检测 被引量:6

Fire Detection with Day-night Infrared Camera
下载PDF
导出
摘要 为了提高火灾监控的准确性和及时性,并最大限度地利用已有硬件设备,提出一种使用日夜两用型红外摄像机的火灾自动监控方法.根据红外图像RGB空间的色彩分布特点,设计视频类型判断算法,实现视频图像类型自动切换.通过红外状态与可见光状态两类状态下的焰色模型提取火焰疑似区域.对疑似火焰区域提取不规则度、角点量、闪烁频率和帧间相关性等4个静态及动态检测特征.通过减聚类和模糊C均值聚类相融合的方式优化训练样本,并分别训练2种状态下的火焰识别神经网络分类器.实验结果表明:视频类型判别平均准确率93.07%,21段火焰或干扰视频均能正确检测,报警时间小于8s,帧处理速度达到25帧/s以上.对室内自动火灾监控的精度高、抗干扰能力强、处理速度实时和适应全天候监控等. In order to improve the accuracy and timeliness of fire detection and achieve the optimal utilization of existing hardware equipments, an automatic fire detection method with day-night infrared camera was proposed. Firstly, a video category classification algorithm based on IR frame color distribution in RGB color space was proposed. It can classify different videos and switch the detection state automatically. Then, fire candidate regions were extracted by using the fire color models of infrared state and visible state. Thirdly, the irregularity, corner number, frequency and correlation coefficient oscillation times were computed as four static or dynamic fire features. Finally, the training feature data optimized by Subtractive Clustering and Fuzzy C Means were the input of Neural Network,and fire classifiers for two kinds of video states were trained separately. Experiment results have indicated that the average classification accuracy of video categories has achieved 93.07%, and the proposed method is able to detect all of the 21 videos correctly. The proposed method gives warning 8 seconds after fire occurs. The processing speed is more than 25fps. It can meet the requirements of high detection precision, strong anti-interference, realtime processing speed, and adaptation to alleather monitoring.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第8期73-80,共8页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金资助项目(60573182)
关键词 火灾科学 计算机视觉 火焰检测 全天候监控 fire safety science computer vision fire detection all-weather monitoring
  • 相关文献

参考文献17

  • 1杨俊,王润生.基于计算机视觉的视频火焰检测技术[J].中国图象图形学报,2008,13(7):1222-1234. 被引量:26
  • 2HEALEY G, SLATER D, LIN T,et al. A system for real time fire detection[C]//CVPR~ 93. New York: IEEE Com- puter Society Press, 1993: 605-606.
  • 3LIU Che-bin, AHUJA N. Vision based fire detection[C]// ICPR'04. Washington, DC: IEEE Computer Society Press, 2004: 134-137.
  • 4TOREYIN B U, DEDEOGLU Y, GUD/JKBAY U, et al. Computer vision based method for real-time fire and flame de- tection[J]. Pattern Recognition Letter, 2006, 27(1): 49- 58.
  • 5TREYIN B U,~ETIN A E. Online detection of fire in video [C]//CVPR'07. Minnesota: IEEE Computer Society Press,2007: 1-5.
  • 6ZHANG Zhong, ZHAO Jian-hui, ZHANG Deng-yi, et al. Contour based forest fire detection using FFT and wavelet [C]//Proeeedings of 2008 International Conference on Com- puter Science and Software Engineering. Wuhan: IEEE Com- puter Society Press, 2008: 760-763.
  • 7CELIK T, DEMIREL H. Fire detection in video sequences u- sing a generic color model[J]. Fire Safety Journal, 2009, 44 (2):147-158.
  • 8YU Chun-yu, FANG Jun, WANG Jin-jun0 et al. Video fire smoke detection using motion and color features [J]. Fire Technology, 2010, 46(3) : 651-663.
  • 9T()REYIN B U, CINBIS R G, DEDEO(~LU Y,et al. Fire de- tection in infrared video using wavelet analysis[J]. Optical En- gineering, 2007, 46(6): 067204.
  • 10汪锦,于伟华,韩韬.面向红外视频图像的火焰识别[J].上海交通大学学报,2008,42(12):1979-1982. 被引量:9

二级参考文献61

  • 1陈莹,吴爱国.基于图像处理的火灾监测系统软件设计[J].低压电器,2006(1):32-35. 被引量:9
  • 2袁非牛,廖光煊,张永明,刘勇,于春雨,王进军,刘炳海.计算机视觉火灾探测中的特征提取[J].中国科学技术大学学报,2006,36(1):39-43. 被引量:52
  • 3Celik T, Demirel H, Ozkaramanli H, et al. Fire detection in video sequences using statistical color model[J]. Journal of Visual Communication and Im- age Representation, 2007, 18(2): 176-185.
  • 4Chen Thou ho, Yin Yen hui, Huang Shi-feng. The smoke detection for early fire-alarming system based on video processing[C]//IEEE 2006 International Conference on Intelligent Information Hiding and Multimedia Signal Processing ( IIHMSP ' 2006 ). Washington, DC, USA : IEEE Computer Society Press, 2006: 427-430.
  • 5Cho Bo ho, Bae Jong-wook, Jung Sung-hwan. Image processing-based fire detection system using statistic color model[C] // International Conference on Advanced Language Processing and Web Information Technology. Washington, DC, USA : IEEE Computer Society Press, 2008 : 245-250.
  • 6Turgay Celik, Hasan Demirel. Fire detection in video sequences using a generic color model[J].Fire Safety Journal, 2009, 44: 147-158.
  • 7Liu Che-bin, Narendra Ahuja. Vision based fire detection[C]///Proceedings of the 17th International Conference on Pattern Recognition ( ICPR ' 04 ). Washington, DC, USA : IEEE Computer Society Press, 2004 : 134-137.
  • 8Toreyin Ugur, Yigithan Dedeoglu, et al. Computer vision based method for real-time fire and flame detection[J]. Pattern Recognition Letter, 2006, 27 (1) :49-58.
  • 9Nobuyuki Fujiwara, Kenji Terada. Extraction of a smoke region using fractal cording[J]. Transactions of the Institute of Electrical Engineers of Japan D, 2005, 125(8):808-814.
  • 10Pentland A P. Fraetal-based description of natural scenes[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1984, 6(6) :661-674.

共引文献56

同被引文献49

引证文献6

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部