期刊文献+

一种新的DTW最佳弯曲窗口学习方法 被引量:15

New Leaning Method for Optimal Warping Window of DTW
下载PDF
导出
摘要 时间序列相似性查询中,DTW(Dynamic Time Warping)距离是支持时间弯曲的经典度量,约束弯曲窗口的DTW是DTW最常见的实用形式。分析了传统DTW最佳弯曲窗口学习方法存在的问题,并在此基础上引入时间距离的概念,提出了新的DTW最佳弯曲窗口学习方法。由于时间距离是DTW计算的附属产物,因此该方法可以在几乎不增加运算量的情况下提高DTW的分类精度。实验证明,采用了新的学习方法后,具有最佳弯曲窗口的DTW分类精度得到明显改善,分类精度优于ERP(Edit Distance with Real Penalty)和LCSS(Longest Common SubSequence),接近TWED(Time Warp Edit Distance)的水平。 The dynamic time warping is a classic similarity measure which can handle time warping issue in similarity computation of time series,and the DTW with constrained warping window is the most common and practical form of DTW.After systematically analyzing the traditional learning method for optimal warping window of DTW,we introduced time distance to measure the time deviation between two time series,and proposed a new leaning method for optimal warping window based on time distance.Since the time distance is an appurtenant of the DTW computation,the new method can improve DTW classification accuracy with little additional computation.Experimental data show that the optimal DTW with best warping window gets better classification accuracy when the new learning method is employed.What is more,the classification accuracy is better than the ERP(Edit Distance with Real Penalty) and the LCSS(Longest Common SubSequence),and is close to the TWED(Time Warp Edit Distance).
作者 陈乾 胡谷雨
出处 《计算机科学》 CSCD 北大核心 2012年第8期191-195,共5页 Computer Science
基金 国家自然科学基金(61001106) 国家重点基础研究发展计划("973"项目)(2009CB320400)资助
关键词 时间序列 相似性度量 动态时间弯曲 弯曲路径 时间距离 Time series Similarity measure Dynamic time warping Warping path Time distance
  • 相关文献

参考文献17

  • 1Rafiei D, Mendelzon A. Efficient retrieval of similar time se- quences using DFT [C]//Proceedings of 5th International Con- ference on Foundations of Data Organizations and Algorithms. Kobe,Japan, 1998:249-257.
  • 2Berndt D J, Clifford J. Using dynamic time warping to find pat- terns in time series [C]//Proceedings of the AAAI Workshopon Knowledge Discovery in Databases. Menlo Park, CA: AAAI, 1994:359-370.
  • 3Das G, Gunopulos D, Mannila H. Finding Similar Time Series [C]//Proceedings of the Conference on Principles of Knowledge Discovery and Data Mining. Springer-Verlag, London, UK, 1997:88-100.
  • 4Loh W K, Kim S W, Whang K Y. Index interpolation: an ap- proach for subsequence matching supporting normalization transform in time-teries databases [C]//Proceedings of the 9th Intemation Conference on Information and Knowledge Manage- ment. New York: ACM Press, 2000: 314-325.
  • 5Vlachos M, Hadjieleftheriou M, Gunopulos D, etal. Indexing Multi-Dimensional Time-Series with Support for Multiple Dis- tance Measures[C]//Proceedings of 9th ACM SIGKDD Inter- national Conference on Knowledge Discovery and Data Mining. ACM, New York, NY, USA, 2003 : 216-225.
  • 6Chen L,Ng R. On the marriage of Lp-norm and edit distance[C]// Proceedings of the 30th International Conference on Very Large Data Bases. Toronto, Canada: VLDB Endowment, 2004 : 792-801.
  • 7陈胜利,李俊奎,刘小东.基于提前终止的加速时间序列弯曲算法[J].计算机应用,2010,30(4):1068-1071. 被引量:10
  • 8尚福华,孙达辰,吕海霞.提高DTW运算效率的改进算法[J].计算机工程与设计,2010,31(15):3518-3520. 被引量:3
  • 9Keogh E. Exact indexing of dynmic time warping [C]//Procee- dings of 28th International Conference on Very Large Databases Conference. Hong Kong: VLDB Endowment, 2002 : 406-417.
  • 10Kim S, Park S, Chu W. An index-based approach for similarity search supporting time warping in large sequence databases[C]// Proceedings of the 17th International Conference on Data Engi- neering. Heidelberg: IEEE Computer Society, 2001 : 607-614.

二级参考文献17

  • 1潘定,沈钧毅.时态数据挖掘的相似性发现技术[J].软件学报,2007,18(2):246-258. 被引量:41
  • 2KEOGH E,KASETTY S.On the need for time series data mining benchmarks:A survey and empirical demonstration[C]// Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2002:102-111.
  • 3FALOUTSOS C,RANGANATHAN M,MANOLOPOULOS Y.Fast subsequence matching in time-series databases[J].ACM SIGMOD Record,1994,23(2):419-429.
  • 4KEOGH E.Exact indexing of dynamic time warping[C]// Proceedings of 28th International Conference on Very Large Databases Conference.Hong Kong:VLDB Endowment,2002:406-417.
  • 5BERNDT D J,CLIFFORD J.Using dynamic time warping to find patterns in time series[C]// KDD-94:AAAI Workshop on Knowledge Discovery in Databases.Washington,DC:AAAI,1994:229-248.
  • 6KIM S,PARK S,CHU W.An index-based approach for similarity search supporting time warping in large sequence databases[C]//ICDE 2001:Proceedings of the 17th International Conference on Data Engineering.Washington,DC:IEEE Computer Society,2001:607-614.
  • 7LIU XIAOYAN,FETHATOSMANOGLU H.Efficient K-NN search on streaming data series[C]//SSTD 2003:Proceedings of Symposium on Advances in Spatial and Temporal Databases,LNCS 2750.Berlin:Springer,2003:83-101.
  • 8KEOGH E J,PAZZANI M J.A simple dimensionality reduction technique for fast similarity search in large time series,datahases[C]//Proceedings of the 4th Pacific-Asia Conference on Knowledge Discovery and Data Mining,Current Issues and New Applications.Berlin:Springer,2000:122-133.
  • 9LI WEI,KEOGH E,van HERLE H,et al.Atomic wedgie:Efficient query filtering for streaming time series[C]//ICDM'05:Proceedings of the 5th IEEE International Conference on Data Mining.Washington,DC:IEEE Computer Society,2005:490-497.
  • 10KEOGH E,LI WEI,XI XIAOPENG,et al.LB_Keogh supports exact indexing of shapes under rotation invarience with arbitrary representations and distance measures[C]// Proceedings of the 32nd Very Large Databases Conference.Seoul VLDB Endowment,2006:882-893.

共引文献10

同被引文献121

引证文献15

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部