期刊文献+

利用粒子滤波进行动态精密单点定位观测异常影响控制

Influences Control of Outlying Observations in Dynamic PPP by Particle Filtering
原文传递
导出
摘要 采用粒子滤波控制观测异常影响,提高动态精密单点定位精度。粒子滤波是一种非高斯噪声分布的动态滤波,通过重点概率密度进行随机采样以获取高精度状态参数;根据观测噪声概率密度、状态噪声概率密度以及重点概率密度等因素确定粒子权值,降低受污染粒子对定位结果的影响;采用Kalman滤波进行重点采样,减缓粒子退化;采用单差无电离层固定模糊度,减少状态参数维数,进而减少粒子的选取个数。实测数据结果表明,粒子滤波有效控制了观测异常影响,提高了动态精密单点定位的精度。 The precision of dynamic precise point positioning using Kalman filtering will be degraded,even be divergent when the outliers exist.Particle filtering is applied to control the influences of the observational outliers,and improve the accuracy of positioning.Particle filtering is a kind of nonlinear filter with non-Gaussian distribution,and it can obtain accurate parameters by random sample.The weight of each particle is defined based on the probability densities of the observational errors,predicted state errors as well as the important distribution in order to control the influences of contaminated particles to the positioning results.Kalman filtering is employed to get the important sampling to slow down the degeneracy of the particle.The free-ionosphere ambiguities are fixed before data processing to reduce the number of parameters in the state vector.An actual dynamic GPS data set is employed to test the particle filter procedure.The procedure of the particle filtering can efficiently control the influences of the observational outliers,and improve the accuracy of the dynamic precise point positioning.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2012年第9期1028-1031,共4页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金资助项目(41020144004 41004013) 陕西省测绘地理信息局科技创新基金资助项目
关键词 动态精密单点定位 观测异常 粒子滤波 重点采样 dynamic precise point positioning outliers of the observations particle filtering important sampling
  • 相关文献

参考文献9

  • 1张小红,刘经南,Rene Forsberg.基于精密单点定位技术的航空测量应用实践[J].武汉大学学报(信息科学版),2006,31(1):19-22. 被引量:152
  • 2Salzmann M. Real-Time Adaptation for Model Er- rors in Dynamic Systems [J]. Bulletin Geodesique, 1995, 69:81-89.
  • 3Lu G, Laehapelle G. Reliability Analysis for Kine- matic GPS Position and Velocity Estimation [C]. IAG Symposium 107 on Kinematic Systems in Ge- odesy, Surveying and Remote Sensing, New York, 1990.
  • 4陶本藻.卡尔曼滤波模型误差的识别[J].地壳形变与地震,1999,19(4):15-20. 被引量:36
  • 5杨元喜.动态系统的抗差Kalman滤波[J].解放军测绘学院学报,1997,14(2):79-84.
  • 6Koch K R, Yang Y. Robust Kalman Filter for RankDeficient Observation Model[J]. Journal of Geode- sy, 1998, 72(8):436-441.
  • 7高为广.GPS/INS自适应组合导航算法研究中的应用[D].郑州:信息工程大学,2008.
  • 8Ge Maorong, Gendt G. Resolution of GPS Carrier Phase Ambiguities in Precise Point Positioning With Daily Observations[J]. J Geod, 2008, 82 (7) .. 389- 399.
  • 9van der Merwe R. Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space Mod- els[D]. USA: Oregon Graduate Institute of science and Technology, 2004.

二级参考文献11

  • 1崔希璋 於宗俦.广义测量平差(第二版)[M].北京:测绘出版社,1992..
  • 2佩尔策 张正禄(译).现代工程测量控制网的理论和应用[M].北京:测绘出版社,1989.186-200.
  • 3陶本藻,测量数据统计分析,1992年,226页
  • 4崔希璋,广义测量平差(第2版),1992年,42-45,243-260页
  • 5张正禄(译),现代工程测量控制网的理论和应用,1989年,186页
  • 6马颂得 张正友.计算机视觉-计算理论与算法基础[M].北京:科学出版社,1998..
  • 7Harris C, Stephens M. A Combined Corner and Edge Detector[C]. The 4th Alvey Vision Conference. Manchester, 1988.
  • 8Zhang Zuxun, Zhang Jianqing. Wu Xiaoliang. et al.Global Image Matching with Relaxation Method[C]. The International Colloquium on Phologrammetry, Remote Sensing and Geographic Information Systems. Wuhan. China. 1992.
  • 9Zhang Zuxun, Derche R, Faugeras O, et al. A Robust Technique for Matching Two Uncalibrated Images Through the Recovery of the Unknown Epipolar Geometry[J]. Artificial Intelligence, 1995, 78(1 2): 87-119.
  • 10Aggarwal J K. Nandhakummar N. On the Computation of Motion from Sequences of Images: a Review[J]. IEEE, 1988, 76(8): 917-935.

共引文献203

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部