期刊文献+

基于CAM的认知超宽带频谱感知方法

Spectrum Detection for Cognitive Ultra-wideband Based on Cyclic Autocorrelation Matrix
下载PDF
导出
摘要 频谱感知是认知超宽带系统的核心部分,针对超宽带频带内授权信号类型确定的特点,为了弥补自相关检测不能够识别信号类型的缺点,提出利用信号的循环谱特征和自相关矩阵差异性来检测授权信号,该方法融合了自相关检测和循环谱检测的优点进行合作判决。仿真表明该方法在高低信噪比环境下均能比循环谱检测和能量检测得到更好地检测效果,因此适合于认知超宽带系统。 Spectrum sensing is one of key parts for CUWB system, since styles of targeted signals in the UWB spectrum band are predefined, in order to offset shortcomings of autocorrelation detection?which could not distinguish signal styles. This paper presents a sensing method employing the differences of cyclic feature and autocorrelation matrix between signals to distinguish whether the frequencies can be used by cognitive users, this method combines advantages of cyclostationary detection and autocorrelation detection to make a decision cooperatively. The simulation shows that performance of the proposed method is much better than the cyclostationary detection and energy detection both in high and low SNR environment, therefore, this method is fit for CUWB system.
出处 《火力与指挥控制》 CSCD 北大核心 2012年第8期91-93,97,共4页 Fire Control & Command Control
关键词 频谱感知 认知超宽带 自相关矩阵 循环谱检测 spectrum sensing, cognitive ultra-wideband, autoeorrelation matrix, eyelostationarydetection
  • 相关文献

参考文献10

  • 1ITOLA M J. Cognitive Radio : Making Software Radios More Personal [ J ]. IEEE Personal Communications.1999,6(4) : 13-18.
  • 2Granelli F,Zhang H G. Cognitive Ultra Wide Band Radio:A Research Vision and Its Open Challenges [C ]//Networking with Ultra Wideband and Workshop on Ultra Wide Band for Sensor Networks, 2005:55-59.
  • 3Cabric D, Brodersen R W. Physical Layer Design Issues Unique to Cognitive Radio Systems [C]// Proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. Berlin, Germany..IEEE, 2005: 759-763.
  • 4Digham F F,Alouini M S,Simon M K. On the Energy Detection of Unknown Signals Over Fading Channels [ J ]. IEEE Transactions on Communications, 2007.55(1) :21-24.
  • 5Kyouwoong K M. Akbar I, Baekyung K, et al. Cyclostationary Approaches to Signal Detection and Classification in Cognitive Radio [C]//Proceedings of New Frontiers in Dynamic Spectrum Access Networks. Dublin,Ireland: IEEE,2007:212-215.
  • 6Cardoso L S.Debbah M, Bianchi P. Cooperative Spectrum Sensing using Random Matrix Theory [C]//Proceedings of ISWPC. Sautorini: IEEE, 2008:334-338.
  • 7Zeng Y H, Liang Y C. Spectrum Sensing Algorithm for Cognitive Radio Based on Statistical Covariances [J]. IEEE Transactions on Vehicular Technology, 2009, 58(4):1804-1815.
  • 8Zeng Y H,Liang Y C. Eigenvalue-based Spectrum Sensing Algorithms for Cognitive Radio [J]. IEEETransactions on Communications, 2009. 57(6):1784-1793.
  • 9Zeng Y H,Liang Y C. Covariance Based Signal Detections for Cognitive Radio[C]//New Frontiers in Dynamic Spectrum Access Networks, 2007. DySPAN 2007. 2nd IEEE International Symposium on, 2007.
  • 10Ye Z.Memik G,Grosspietsch J. Energy Detection using Estimated Noise Variance for Spectrum Sensing in Cognitive Radio Networks [C]// Proceedings of IEEE Wireless Communications and Networking Conference. Las Vegas, USA: IEEE,.2008:71I-716.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部