期刊文献+

云环境下基于改进蚁群算法的虚拟机批量部署研究 被引量:18

Research on Extended Ant Colony Optimization Based Virtual Machine Deployment in Infrastructure Clouds
下载PDF
导出
摘要 针对云计算中虚拟机批量部署问题,在定义虚拟机与服务器匹配距离的基础上,使用蚁群优化思路进行部署方案搜索,并有针对性地对蚁群算法进行了扩展改进。首先在蚁群算法随机比例规则中加入性能感知策略,以尽量避免将相同性能偏好的虚拟机部署在同一台服务器上,造成对硬件资源竞争的危险。同时增加了单一蚂蚁信息素更新规则,以减少错误先验知识对蚂蚁后续选择的误导。通过在CloudSim中的仿真实验,对算法参数选择进行了研究。与现有部署算法相比,本算法具有更好的系统负载均衡性能和资源利用率,以及比基本蚁群算法更快的收敛速度。 Aiming at the virtual machine deployment problem in the cloud computing environment,based on the defining of the match-distance between the virtual machine and the server,the ant colony optimization(ACO)was used to research the deployment scheme.And the ACO was extended and modified for the deployment problem.Using the probabilistic tour decision with performance apperceive policy,the virtual machines with the same performance interest are designedly placed in different servers to reduce the competition of the hardware resources.And using the single ant pheromone update rules,the misdirection of the inaccurate heuristic information is avoided.The parameter values for the arithmetic were researched with the experiments in CloudSim.Finally,the performance of the extended ACO was compared with that of the ranking deployment arithmetic and the original ACO.The experimental results show that the extended ACO meets the need of the system load balancing better,and accelerates the convergence to the original ACO.
出处 《计算机科学》 CSCD 北大核心 2012年第9期33-37,共5页 Computer Science
基金 武器装备预研重点基金项目(9140A15060311JB5201)资助
关键词 云计算 虚拟机 蚁群优化 信息素 负载均衡 Cloud computing Virtual machine Ant colony optimization Pheromone Load balancing
  • 相关文献

参考文献14

  • 1Gillen A, Broussard F W, Perry R, et al. Optimizing infrastruc- ture:the relationship between it labor costs and best practices for managing the windows desktop[EB/OL], http://download. microsoft, com/download/a/4/4/a4474bOc-57dS-41a2-afe6-3203 7fa93ea6/II)C_windesktop_IO_whitepaper. pdC. 2007.
  • 2Mell P, Grbace T. The NIST Definition of Cloud Computing [R]. National Institute of Standards and Technology, 2011.
  • 3Amazon. EC2[EB/OL]. http://aws, amazon, com/ec2,2011.
  • 4罗军舟,金嘉辉,宋爱波.东方云计算:体系架构和关键技术[J].通信学报,2009,20(5):1337-1348.
  • 5DMTF. Open Virtualization Format Specification[R]. DSP0243, DMTF, 2009.
  • 6Konstantionou A V,Eilam T,KALANTAR M, et al. An Archi- tecture for Virtual Solution Composition and Deployment in In- frastructure Clouds[C]//VTDC'09. Barcelona:Spain,June 15, 2009.
  • 7汤小春,刘健.基于元区间的云计算基础设施服务的资源分配算法研究[J].计算机工程与应用,2010,46(34):237-241. 被引量:12
  • 8雷葆华,饶少阳,江峰,等.云计算解码:技术架构和产业运营[J].电子工业初版社,2011(4):65-66.
  • 9Dorigo M, Maniezzo, Colorni A. The ant system: Optimization by a colony of eooperating agents[C]//IEEE Trans. System Man Cybernet. 1996(B26) :29-41.
  • 10Dorigo M, CARO G D. Ant Colony Optimization: A New Meta- Heuristic[C]//Proceedings of the 1999 Congress on Evolutionary Computation. Washington DC,USA, 1999:1470-1477.

二级参考文献6

  • 1MillerM.云计算[M].姜进磊,孙瑞志,向勇,等译.北京:机械工业出版社,2009.
  • 2Ahson S,Ilyas M.Cloud computing and software services[M].[S.l.]: CRC Press, 2009.
  • 3Amazon.Elastic compute cloud[EB/OL].http://aws.arnazon.com/ec2.
  • 4Caron E, Desprez F, Loureiro D, et al.Cloud computing resource management through a grid middleware:A case study with DIET and eucalyptus[C]//IEEE International Conference on Cloud Computing, Bangalore, India, September 21-September 25,2009.
  • 5Foster I, Zhao Yong, Raicu I, et al.Cloud computing and grid computing 360-degree compared[C]//Grid Computing Environments Workshop,IEEE,2008: 1-10.
  • 6Google app engine[EB/OL].http://appengine.google.com/.

共引文献11

同被引文献146

引证文献18

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部