摘要
通过对微博客的信息传播网络进行分析和测量,从区域信息传播的角度出发,研究了微博信息传播的微观过程。通过真实测量用户的信息传播行为,构建了信息收听网络和信息转发网络模型。通过实测数据发现,在区域信息传播中少量核心节点覆盖了主要的网络信息传播行为。针对这些核心节点,提出了一种类PageRank算法的Weibo-Rank用户传播影响力识别算法,提出了基于真实测量的信息传播覆盖率的评价指标,并通过与多种社会性传统用户影响力分析算法进行对比,实证了该算法的有效性和准确性。
Based on the Micro-blogging analysis,from a regional perspective,we researched micro-process of information diffusion.By measuring the real behavior of the user’s information sharing,we constructed the network model of information listen and information forward.We found that a small group of nodes can cover the most of the communication behavior of the information diffusion.Then,we proposed a recognition algorithm named WeiboRank like Hits to find them,and proposed a evaluation based on real measurement coverage.It is verified that compared with the other algorithms,the proposed algorithm is effective.
出处
《计算机科学》
CSCD
北大核心
2012年第9期38-42,共5页
Computer Science
基金
"十二五"科技支撑计划重点项目(2011BAK08B01)资助
关键词
微博客
社交网络
信息传播
传播影响力
Micro-blogging
Social networking
Information diffusion
Diffusion of influence