期刊文献+

一种新的基于图划分聚类算法——GAGPBCUK算法 被引量:1

Novel Graph Partition Based Clustering Algorithm——GAGPBCUK
下载PDF
导出
摘要 提出了一种新的基于图划分的聚类算法——GAGPBCUK算法。该算法解决了谱聚类算法参数敏感和聚类结果不准确等问题。3组仿真实验结果表明,GAGPBCUK算法不仅在识别和学习数据集中的隐含聚类数方面具有很好的性能,而且能够得到比谱聚类算法(NJW算法)更加有效的聚类结果。 A novel graph partition based clustering algorithm(GAGPBCUK)was proposed to prevent the defects of spectral clustering methods,such as sensitive parameters and inaccurate results.Experiment results on three simulation datasets indicate that the proposed algorithm can not only determine and learn the dataset’s cluster number effectively but also can get more effective clustering result than spectral clustering algorithm(i.e.NJW algorithm).
作者 李小红 罗敏
出处 《计算机科学》 CSCD 北大核心 2012年第9期162-165,169,共5页 Computer Science
基金 国家自然科学基金重大研究计划项目(90718006 90718005)资助
关键词 聚类算法 谱聚类 遗传算法 图划分 Clustering algorithm Spectral cluster Genetic algorithm Graph partition
  • 相关文献

参考文献29

  • 1沈亚田,沈夏炯,张磊.基于图划分的谱聚类算法在文本挖掘中应用[J].计算机技术与发展,2009,19(5):96-98. 被引量:6
  • 2Wu Z, Leahy R. An optimal graph theoretic approach to data clustering: theory and it's application to image segmentation [J]. IEEE Trans. Pattern Anal,1993,15(11) :1101-1113.
  • 3Kahng H L. A New spectral methods for ratio cut partitioning and clustering [J]. IEEE Transactions on Computed Aided De- sign, 1992,11 (9) :1047-1085.
  • 4Chung F. Spectral graph theory[C]//Conference Board of the Mathematical Sciences. Washington, 1997.
  • 5Shi J, Malik J. Normalized cuts and image segmentation [J].IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2000,22 (8) : 888-905.
  • 6Kannan R, Vempala S, Vetta A. On clusterings: good, bad and spectral [C] // Proceedings of the Annual IEEE Symposium on Foundations of Computer Science. Redondo, IEEE Press, 2000: 367-377.
  • 7Ng A, Jordan M, Weiss Y. On spectral clustering: analysis and an algorithm[C]//Dietterich T, Becker S, Ghahramani Z, eds. Advances in Neural Information Processing Systems. MIT Press, 2002.
  • 8Ding C, He X,Zha H, et al. A min-max cut algorithm for graph partitioning and data clustering[C]//Proceedings of the first IEEE International Conference on Data Mining(ICDM), 2001. Washington, DC, USA:IEEE Computer Society, 2001 : 107-114.
  • 9Meila M, Shi J. A random walks view of spectral segmentation [C]//Proceedings of AISTATS. Florida, 2001 : 873-879.
  • 10Belkin M. Problems of Learning on Manifolds[D]. University of Chicago, 2003.

二级参考文献83

  • 1刘静,钟伟才,刘芳,焦李成.免疫进化聚类算法[J].电子学报,2001,29(z1):1868-1872. 被引量:43
  • 2刘泉凤,陆蓓,王小华.文本挖掘中聚类算法的比较研究[J].计算机时代,2005(6):7-8. 被引量:8
  • 3张建华,江贺,张宪超.蚁群聚类算法综述[J].计算机工程与应用,2006,42(16):171-174. 被引量:41
  • 4张丽娟,李舟军.分类方法的新发展:研究综述[J].计算机科学,2006,33(10):11-15. 被引量:20
  • 5Donth W E,Hoffman A J. Lower bounds for the partitioning of graphs[J]. IBM J Res Develop, 1973,17: 420 - 425.
  • 6Fiedler M. Algebraic connectivity of graphs[ J ]. Czech Math J, 1973,23 : 298 - 305.
  • 7Hagen L,Kahng A B.New spectral methods for ratio cut partitioning and clustering [ J ]. IEEE Tramactions on Computed - Aided Design, 1992,11 (9) : 1047 - 1085.
  • 8Mohar B. Some applations of Laplace eigenvalues of graphs [C]//In: Hahn G eds. Graph Symmetry:Algebraic Methods and Applations, Vol 497 of NATO ASI Series C. [ s. l. ] : Kluwer, 1997:225 - 275.
  • 9卞月华,吴建专,顾国华,等.图论及其应用[M].南京:东南大学出版社,2002.
  • 10周志华,王钰.机器学习及其应用[M].北京:清华大学出版社,2006.

共引文献78

同被引文献14

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部