期刊文献+

一种新的兼类样本类增量学习算法 被引量:1

New Multi-label Sample Class Incremental Learning Algorithm
下载PDF
导出
摘要 提出了一种基于超椭球的兼类样本类增量学习算法。对兼有同一类别的样本,在特征空间构建一个能包围该类尽可能多样本的最小超椭球,使各类样本之间通过超椭球球面分开。增量学习过程中,对新增样本中的每一新类别构建超椭球,对新增样本中的各历史类别重新构建超椭球,使得算法在很小的空间代价下实现了兼类样本类增量学习,同时保留了与新增样本类别无关的历史类训练结果。分类过程中,根据待分类样本是否在超椭球内或隶属度来确定其所属类别。实验结果表明,该算法较超球方法具有较快的分类速度和较高的分类精度。 To multi-label sample,a class incremental learning algorithm based on hyper ellipsoidals was proposed.For every class,the smallest hyper ellipsoidal that contains most samples of the class was structured,which can divide the class samples from others.In the process of class incremental learning,the hyper ellipsoidals of new class were structured,and the historical hyper ellipsoidal that its class exists in the incremental samples was structured again.The multi-label class incremental learning is realized in a small memory space,and the history results that has nothing to do with the new sample classes are saved at the same time.For the sample to be classified,its class is confirmed by the hyper ellipsoidal that it belongs to or its membership.The experimental results show that the algorithm has a higher performance on classification speed and classification precision compared with hyper sphere algorithm.
出处 《计算机科学》 CSCD 北大核心 2012年第9期206-207,224,共3页 Computer Science
基金 国家自然科学基金项目(60974071) 辽宁省教育厅重点实验室项目(LS2010180) 辽宁省教育厅优秀人才项目(201102005)资助
关键词 超椭球 兼类 增量学习 隶属度 Hyper ellipsoidals Multi-label Incremental learning Membership
  • 相关文献

参考文献14

  • 1Li Y. On incremental and robust subspace learning[J]. Pattern Recognition, 2004,37 (7) : 1509-1518.
  • 2Lam W, Keung C K, Liu D. Discovering useful concept proto- types for classification based on filtering and abstraction [J]. IEEE Transtrations on Pattern Analysis and Maehine Intelli- gence, 2002,24(8) : 1075-1090.
  • 3Gangardiwala A, Polikar tC Dynanncally weighted majority vo ting for incremental learning and comparison of three boosting based approache[C]// Proeeedings of the IEEE International Joint Conference on Neural Networks. Montreal, Canada, 2005 ; 1131-1136.
  • 4Cauwenberghs G, Poggio T. Incremental and decremental sup port vector machine[J]. Machine Learning, 2001,44(13) : 409-415.
  • 5Zhang J P,Li Z W,Yang J. A divisional incremental training al gorithm of support vector machine [C]// Proceeding of the IEEE International Conference on Mechatronics and Automa- tion. Niagara Falls, Canada, 2005 : 853-855.
  • 6Diehl C, Cauwenberghs G. SVM incremental learning, adaptation and optimization [C]/// Proceedings of the International Joint Conference on Neural Networks. 2003:2685-2690.
  • 7孔锐,张冰.一种快速支持向量机增量学习算法[J].控制与决策,2005,20(10):1129-1132. 被引量:31
  • 8萧嵘,王继成,孙正兴,张福炎.一种SVM增量学习算法α-ISVM[J].软件学报,2001,12(12):1818-1824. 被引量:85
  • 9Zhang B F, Su J S, Xu X. A class-incremental learning method for multi-class support vector machines in text classification[C]/// Proceedings of the Fifth International Conference on Machine Learning and Cybernetics. Dalian,China, 2006 : 13-16.
  • 10秦玉平,李祥纳,王秀坤,王春立.基于超球支持向量机的类增量学习算法研究[J].计算机科学,2008,35(8):116-118. 被引量:8

二级参考文献40

共引文献115

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部