期刊文献+

8倍双视场大相对孔径红外折/衍射系统设计 被引量:4

Design of 8× dual field of view zoom and large relative aperture infrared hybrid refractive-diffractive system
下载PDF
导出
摘要 针对红外光电跟踪系统的研制要求,设计了一套8~12μm波段折/衍射混合型双视场变焦系统。该系统结构简单、相对孔径大、变倍比高,突破了以往红外变焦系统相对孔径小、变倍比小、结构复杂等缺陷;采用衍射元件的固有特性进行消色差及消热差设计,并利用锗与硫化锌的混合来校正系统色球差,其最终设计的相对孔径(即F数)为1.1,系统变倍比为8。设计结果表明,在空间频率18lp/mm处,-40~70℃温度范围内,宽视场及窄视场MTF均在0.55以上,接近衍射极限;在接受半径为15μm的探测器像元内,能量透过率大于78.5%,表明该系统具有良好的成像质量,在实际使用温度环境下实现了消热差设计。 A set of 8-12 μm infrared hybrid refractive-diffractive dual field of view zoom system was designed based on the triturating requirement of the photoelectric tracking system. The system broke through the flaw that the conventional system always had small relative aperture, small zoom ratio and complex structure. A simple dual field of view system with large relative aperture and high zoom ratio was designed. DOE was used to calibrate the chromatic aberration and temperature difference by its internal characteristics. Ge and ZnS were utilized to calibrate the spherochromatic aberration. The final designed result was that F# was 1.1(relative aperture), and the zoom ratio is 8x. The result indicates that the MTF is above 0.55 abroad and narrow field of view which is at the spatial frequency of 18 lp/mm, and the MTF is approaching to the diffraction limit. The energy permeance ratio is greater than 78.5% when the system receiving radius in the detecting sensor is smaller than 15μm. It shows that the imaging quality of the zoom system is very good, and it calibrates the temperature difference in real circumstance of the application.
出处 《红外与激光工程》 EI CSCD 北大核心 2012年第8期2173-2177,共5页 Infrared and Laser Engineering
关键词 光学设计 双视场 衍射元件 传递函数 optical design dual field of view diffraction element MTF
  • 相关文献

参考文献10

二级参考文献62

共引文献170

同被引文献34

  • 1崔庆丰.折衍射混合成像光学系统设计[J].红外与激光工程,2006,35(1):12-15. 被引量:25
  • 2张楠,卢振武,李凤有.衍射望远镜光学系统设计[J].红外与激光工程,2007,36(1):106-108. 被引量:20
  • 3李东熙,卢振武,孙强,刘华,张云翠.基于Wassermann-Wolf方程的共形光学系统设计研究[J].物理学报,2007,56(10):5766-5771. 被引量:19
  • 4Shannon R R. Overview of conformal optics[C]//SPIE, 1999, 3705: 180-188.
  • 5Scott W Span'old. Arch corrector for conformal optical systems, part of the SPIE conference on window and dome technologies and materials VI Orlando [C]//SPIE, 1999, 3705: 289-293.
  • 6Knapp, David J, James P, et al. Con-formal optics risk reduction demonstration[C]//SPlE, 2001, 4375: 146-153.
  • 7Mills J P, Sparrold S W, Mitchell T A, et al. Conformal dome correction with counter-rotating phase plates [J]. Optical Engineering, 2000, 39(7): 1822-1829. (in Chinese).
  • 8Yasuhisa Tamagawa T T. Expansion of an athermal chart into a multilens system[J]. Opt Eng, 1996, 35(10): 3001- 3006.
  • 9Povey V. Athermalisation techniques in infrared systems[C]// Optical System Design, Analysis, and Production forAdvanced Technology Systems, 1986: 142-153.
  • 10Jamieson T H. Thermal effects in optical systems[J]. Optical Engineering, 1981, 20(2): 202156.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部