期刊文献+

基于谱元法的裂纹梁Lamb波传播特性研究 被引量:8

LAMB WAVE PROPAGATION IN A CRACKED BEAM USING SPECTRAL FINITE ELEMENT METHOD
原文传递
导出
摘要 首次提出用一种无质量弹簧元来模拟含横向裂纹梁的轴弯耦合效应,并结合谱元法分析含裂纹梁内Lamb波的传播特性。由卡氏定理和断裂力学方法推导弹簧元的刚度,以此构建裂纹处的平衡条件和位移协调条件,建立损伤谱元模型。通过和传统的有限元模型进行比较,表明在显著提高计算效率的同时,所提出模型在分析结构固有特性和Lamb波传播特性上都具有较高的精度。在所提出模型的基础上又推导出基于谱元法的能量计算公式,通过裂纹处的能量守恒再次验证损伤模型的正确性和有效性,同时研究结果表明裂纹处转化生成的Lamb波各模态能量随裂纹深度的变化具有单调性,该结论可以为结构健康监测中定量识别裂纹提供实用依据。 A massless spring, coupling the longitudinal and rotational vibration, is proposed to model the transverse crack and to analyze wave propagation in a cracked beam, based on a spectral finite element method. The stiffness of the spring is obtained from Castigliano's theorem and laws of fracture mechanics. The spring is used to establish force equilibrium and displacement compatibility conditions, by which a cracked spectral finite element model is developed. Compared with the conventional finite element method, the proposed model is proved to obviously improve calculation efficiency and have high accuracy in modal analysis and Lamb wave propagation. Power reflection and transmission are demonstrated to meet with an energy conservation law. Energy of Lamb wave modes varying with the crack depth is also calculated and changes monotonously, which may provide some practical foundations for the quantitative crack identification in structural health monitoring.
作者 孙虎 周丽
出处 《工程力学》 EI CSCD 北大核心 2012年第9期50-55,59,共7页 Engineering Mechanics
基金 国家自然科学基金项目(11172128,61161120323) 江苏省“六大人才高峰”资助项目(2010-JZ-004)
关键词 结构健康监测 Lamb波传播 谱元法 能量 横向裂纹 structural health monitoring Lamb wave propagation spectral tinite element method energy(power) transverse crack
  • 相关文献

参考文献13

  • 1Giridhara G, Rathod V T, Naik S, Mahapatra D R,Gopalakrishnan S. Rapid localization of damage using acircular sensor array and Lamb wave based triangulation[J]. Mechanical Systems and Signal Processing, 2010, 24:2929-2946.
  • 2Yu L Y, Battai-Santoni G, Giurgiutiu V. Shear lagsolution for tuning ultrasonic piezoelectric wafer activesensors with applications to Lamb wave array imaging[J]. International Journal of Engineering Science, 2010,48(10): 848-861.
  • 3Han S J, Palazotto A N, Leakeas C L. Finite elementanalysis of Lamb wave propagation in a thin aluminumplate [J]. Journal of Aerospace Engineering, 2009, 22(2):185-197.
  • 4Meng W J, Zhou L, Yuan F G. A pre-stack reverse-timemigration method for multi-damage detection incomposite plate [C]. Proceedings of SPIE SmartStructures and Materials Conference, 2006, 6174:617444-1-617444-10.
  • 5彭海阔,孟光.基于谱元法的梁结构中Lamb波传播特性研究[J].噪声与振动控制,2009,29(6):62-66. 被引量:4
  • 6Doyle J F. Wave propagation in structures [M]. NewYork: Springer-Verg, 1997: 1-318.
  • 7Ostachowicz W M. Damage detection of structures usingspectral finite element method [J]. Computers andStructures, 2008, 86: 454-462.
  • 8Krawczuk M, Palacz M, Ostachowicz W. The dynamicanalysis of a cracked Timoshenko beam by the spectralelement method [J]. Journal of Sound and Vibration,2003, 264: 728-745.
  • 9Vinod K G, Gopalakrishnan S, Ganguli R. Free vibrationand wave propagation analysis of uniform and taperedrotating beams using spectrally formulated finiteelements [J]. International Journal of Solids andStructures, 2007, 44: 5875-5893.
  • 10Gangadharan R, Mahapatra D R, Gopalakrishnan S,Murthy C R L, Bhat M R. On the sensiticity of elasticwaves due to structural damages: Time-frequency basedindexing method [J]. Journal of Sound and Vibration,2009, 320: 915-941.

二级参考文献11

  • 1Su, Z., Ye, L., Lu, Y., Guided lamb waves for identification of damage in composite struetures: A review[ J]. Journal of sound and vibration, 2006, 295 ( 3 - 5 ) : 753 - 780.
  • 2Lee, B. C. , Staszewski, W.J. , Modelling of Lamb waves for damage detection in metallic structures: Part I. Wave propagation[ J]. Smart Materials & Structures, 2003, 12(5) : 804 -814.
  • 3Lee, B. C. , Staszewski, W.J. , Modelling of Lamb waves for damage detection in metallic structures: Part II. Wave interactions with damage[ J]. Smart Materials & Structures, 2003, 12(5): 815-824.
  • 4Patera, A. T. , A spectral element method for fluid dynamics : laminar flow in a channel expansion [ J ]. Journal of Computational Physics, 1984, 54:468 -488.
  • 5Canuto, C. , Quarteroni, A. , Hussaini, M. Y. , et al. , Spectral Methods in Fluid Dynamics[ M]. 1988, Berlin: Springer.
  • 6Komatitsch, D. , Barnes, C. , Tromp, J. , Simulation of anisotropic wave propagation based upon a spectral element method [ J ]. Geophysics, 2000, 65 (4) : 1251 - 1260.
  • 7Komatitsch, D. , Tromp, J. , Introduction to the spectral element method for three-dimensional seismic wave propagation[ J]. Geophysical Journal International, 1999, 139(3) : 806 -822.
  • 8Kudela, P., Zak, A., Krawczuk, M., et al., Modelling of wave propagation in composite plates using the time domain spectral element method [ J ]. Journal of Sound and Vibration, 2007, 302: 728- 745.
  • 9Zak, A., Krawczuk, M., Ostachowicza, W., Propagation of in-plane waves in an isotropic panel with a crack [ J ]. Finite Elements in Analysis and Design, 2006, 42(11) : 929 -941.
  • 10Kudela, P., Krawczuk, M., Ostachowicz, W., Wave propagation modelling in 1D structures using spectral finite elements [ J ]. Journal of Sound and Vibration, 2007, 300 ; 88 - 100.

共引文献3

同被引文献73

引证文献8

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部