期刊文献+

结合作者与地理信息的主题建模 被引量:2

A Geographic Topic Model with Author Relationship
下载PDF
导出
摘要 为了对带有地理信息的位置相关图像进行有效的主题建模,提出一种结合作者与地理信息的主题建模算法——AGTM.首先在地理相关主题建模过程中引入数据发布者的信息,并利用发布者之间所存在的好友关系来提高主题建模结果的准确度;在建模过程中基于如果2个图像的发布者相同或者发布者之间存在着好友关系,那么他们所发布的图像数据极可能从属于同一地理相关主题这样一个假设,假设图像发布者以某个概率分布于若干社会群组中,而群组又以一定概率分布于某些地理区域之上,使得在主题模型生成过程中充分利用了以往被忽略的发布者属性.使用Flickr中的图像作为数据集进行实验,结果表明,AGTM算法显著提高了模型的准确度和可解释性. With the purpose of discovering the geographical topics from GPS-associated images, a novel geographical topic model, which is called Author-related Geographical Topic Model (AGTM), is proposed and implemented. AGTM increases the accuracy of geographical topic by introducing author information and their relationships into the traditional modeling process. It assumes that if two authors are friends their documents will have a greater probability of being clustered into the same topic. Under this assumption, AGTM divided authors into several social groups, while social groups are assigned to certain geographic regions under some probability distributions. Experiments performed on a dataset of Flickr images with GPS coordinates and other attributes indicate that our approach achieves a better accuracy and interpretability for modeling geographical topic.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2012年第9期1180-1187,共8页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61103099,61105074) 中央高校基本科研业务费专项资金资助(2012QNA5008)
关键词 主题建模 地理信息 作者关系 topic modeling geographic information author relationship
  • 相关文献

参考文献15

  • 1吴飞,庄越挺.互联网跨媒体分析与检索:理论与算法[J].计算机辅助设计与图形学学报,2010,22(1):1-9. 被引量:35
  • 2Hofmann T. Probabilistic latent semantic indexing[C] // Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACMPress, 1999: 50-57.
  • 3Blei D M, Ng A Y, Jordan M I. I.atent Dirichlet allocation [J]. Journal of Machine Learning Research, 2003, 3: 993- 1022.
  • 4Blei D M, McAuliffe J D. Supervised topic models [C] // Proceedings of Advances in Neural Information Processing. Cambridge: MIT Press, 2008:121-128.
  • 5李文波,孙乐,张大鲲.基于Labeled-LDA模型的文本分类新算法[J].计算机学报,2008,31(4):620-627. 被引量:103
  • 6吴飞,韩亚洪,庄越挺,邵健.图像-文本相关性挖掘的Web图像聚类方法[J].软件学报,2010,21(7):1561-1575. 被引量:10
  • 7韩东峰,朱志良,李文辉.图像分类的随机半监督采样方法[J].计算机辅助设计与图形学学报,2009,21(9):1333-1338. 被引量:3
  • 8Wang C, Wang J, Xie X, etal. Mining geographic knowledge using location aware topic model [C] //Proceedings of the 4th ACM Workshop on Geographical Information Retrieval. New York: ACM Press, 2007:65-70.
  • 9Mei Q Z, Liu C, Su H, et al. A probabilistic approach to spatiotemporal theme pattern mining on weblogs [C] // Proceedings of the 15th International Conference on World Wide Web. New York: ACM Press, 2006:533-542.
  • 10Mei Q Z, Cai D, Zhang D, et al. Topic modeling with network regularization [C] //Proceedings of the 17th International Conference on World Wide Web. New York: ACM Press, 2008:101-110.

二级参考文献94

  • 1张启蕊,张凌,董守斌,谭景华.训练集类别分布对文本分类的影响[J].清华大学学报(自然科学版),2005,45(S1):1802-1805. 被引量:26
  • 2曾雪强,王明文,陈素芬.一种基于潜在语义结构的文本分类模型[J].华南理工大学学报(自然科学版),2004,32(z1):99-102. 被引量:27
  • 3苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:386
  • 4Bushara K O, Hanakawa T, Immiseh I, et al. Neural correlates of cross-modal binding [J]. Nature Neuroseience, 2002, 6(2): 190-195.
  • 5Ma Q, Nadamoto A, Tanaka K. Complementary information retrieval for cross-media news content [C] //Proceedings of the 2nd ACM International Workshop on Multimedia Databases, Washington D C, 2004:45-54.
  • 6Zhu X J, Goldberg A B, Eldawy M, etal. A text-to-picture synthesis system for augmenting communication [C] // Proceedings of the 22nd AAAI Conference on Artificial Intelligence, Vancouver, 2007 : 681-687.
  • 7Smoliar S W, Zhang H J. Content-based video indexing and retrieval[J]. IEEE Multimedia, 1994, 1(2): 62-72.
  • 8Rui Y, Huang T S, Ortega M, et al. Relevance feedback: a power tool for interactive content based image retrieval [J]. IEEE Transactions on Circuits and Systems for Video Technology, 1998, 8(5): 644-655.
  • 9Datta R, Joshi D, Li J, et al. Image retrieval: ideas, influences, and trends of the new age [J]. ACM Computing Surveys, 2008, 40(2): 5-60.
  • 10Wu Y, Tian Q, Huang T S. Diseriminant-EM algorithm with application to image retrieval [C] //Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Hilton Head, 2000: 1222-1227.

共引文献147

同被引文献53

  • 1姜晓伟,王建民,丁贵广.基于主题模型的微博重要话题发现与排序方法[J].计算机研究与发展,2013,50(S1):179-185. 被引量:12
  • 2Deerwester S, Dumais S T, Furnas G W, et al. Indexing by la- tent semantic analysis[J]. Journal of the American Society for Information Science, 1990, 41(6): 391-407.
  • 3Hofmann T. Probabilistic latent semantic indexing[C]// Pro- ceedings of the 22nd Annual International ACM SIGIR Con- ference on Research and Development in Information Retrieval New York: ACM Press, 1999:50-57.
  • 4Blei D M, Ng A Y, Jordan M I. Latent Dirichlet allocation[J]. The Journal of Machine Learning Research, 2003, 3:993-1022.
  • 5Teh Y W, Jordan M I, Beal M J, et al. Hierarchical Dirichlet processes[J]. Journal of the American Statistical Association, 2006, 101(476): 1566-1581.
  • 6Blei D M, Lafferty J D. Correlated topic models[J]. Advances in Neural Information Processing Systems, 2006, 18:147-154.
  • 7Blei D M, Griffiths T L, Jordan M I, et al. The nested Chinese restaurant process and Bayesian nonparametric inference of topic hierarchies[J]. Journal of the ACM, 57(2), 2010: Article No. 7.
  • 8Ramage D, Hall D, Nallapati R, et al. Labeled LDA: a super- vised topic model for credit attribution in multi-labeled cor- pora[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics Press, 2009, 1: 248-256.
  • 9Petinot Y, McKeown K, Thadani K. A hierarchical model of web summaries[C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Lan- guage Technologies: Short Papers. Cambridge: MIT Press, 2011,2:670-675.
  • 10Blei D M, Lafferty J D. Dynamic topic models[C]//Proceedings of the 23rd International Conference on Machine learning. New York: ACM Press, 2006:113-120.

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部