期刊文献+

置信连接的自动肝脏分割方法 被引量:9

Confidence Connected Method for Automatic Liver Segmentation
下载PDF
导出
摘要 肝脏分割是计算机辅助肝病诊断和手术计划制定的基础,文中结合置信连接的区域生长算法实现了肝脏的全自动分割.首先利用改进的曲线各向异性扩散滤波对CT图像进行平滑预处理,以便在去除噪声的同时保存边缘信息,进而通过对预处理图像的灰度分析自动选取序列种子点;然后使用置信连接的区域生长算法对肝脏进行分割;最后采用空洞填充法填补区域生长中产生的空洞,改善分割效果.对10套腹部CT图像数据的实验结果表明,分割每幅图像的平均时间是1.46s,准确率为93.6%,其高效、准确性为临床诊断和手术导航提供了有利的信息. Liver segmentation is the primary step for computer-aided liver disease diagnosis and surgery planning. In this paper, we present a fully automatic method for liver segmentation based on the confidence connected region growing. First, a modified curvature anisotropic diffusion filter is applied to CT images for noise reduction while preserving the liver structures, and then a series of seed points is selected automatically by intensity analysis. Then, the liver is segmented with a confidence connected region growing algorithm starting from the seed points. Finally, cavity filling method is used to improve the results of region growing. When tested on 10 abdominal CT image datasets, the average time for liver segmentation from one slice is 1.46 s, and the average segmentation accuracy is 93.6%. Experimental results show that the proposed approach is accurate and efficient enough for the applications in clinical diagnosis and surgical navigation.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2012年第9期1188-1192,共5页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61102137 61001144 60701022 30770561)
关键词 肝脏分割 置信连接 区域生长 曲线各向异性扩散 CT图像 liver segmentation confidence connected region growing curvature anisotropic diffusion CT images
  • 相关文献

参考文献12

  • 1Suzuki K, Kohlbrenner R, Epstein M L, et al. Computer- aided measurement of liver volumes in CT by means of geodesic active contour segmentation coupled with level-set algorithms[J]. Medical Physics, 2010, 37(5) : 2159-2166.
  • 2Meinzer H P, Thorn M, Cdrdenas C E. Computerized planning of liver surgery-an overview[J].Computers & Graphics, 2002, 26(4): 569-576.
  • 3Lee C C, Chen S H, Chiang Y C. Classification of liver disease from CT images using a support vector machine[J]. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2007, 11(4): 396-402.
  • 4Feuerstein M, Mussack T, Heining S M, et al. Intraoperative laparoseope augmentation for port placement and resection planning in minimally invasive liver resection [J]. IEEE Transactions on Medical Imaging, 2008, 27 (3) : 355-369.
  • 5Chaney E, Ibbott G, Hendee W R. Methods for image segmentation should be standardized and calibrated [J].Medical Physics, 2005, 32(12): 3507-3510.
  • 6Heimann T, van Ginneken B, Styner M A, et al. Comparison and evaluation of methods for liver segmentation from CT datasets [J]. IEEE Transactions on Medical Imaging, 2009, 28(8) : 1251-1265.
  • 7Lira S J, Jeong Y Y, Ho Y S. Automatic liver segmentation for volume measurement in CT images[J]. Journal of Visual Communication and Image Representation, 2006, 17 (4) : 860-875.
  • 8彭丰平,鲍苏苏,曾碧卿.基于自适应区域生长算法的肝脏分割[J].计算机工程与应用,2010,46(33):198-200. 被引量:23
  • 9Lee J, Kim N, Lee H, et al. Efficient liver segmentation using a level-set method with optimal detection of the initial liver boundary from level-set speed images[J]. Computer Methods Programs in Biomedicine, 2007, 88(1): 26-38.
  • 10Whitaker R T, Xue X W. Variable-conductance, level-set curvature for image denoising [C]//Proceedings of International Conference on Image Processing. Los Alamitos: IEEE Computer Society Press, 2001, 3:142-145.

二级参考文献20

  • 1Hohne K H,Hanson W A.Interactive 3D segmentation of MRI and CT volumes using morphological operations[J].Comp Assisted Tumogr,1992,16(2):285-294.
  • 2Zucker S W.Region growing:Childhood and adolescence[J].Computer Graphics Image Processing,1976,5:382-399.
  • 3Wan S Y,Higgins W E.Symmetric region growing[J].Image Processing,2003,12(9):1007-1015.
  • 4Mehnert A,Jackway P.An improved seeded region growing algorithm[J].Pattern Recognition Letters,1997,18(10):1065-1071.
  • 5Revol-Muller C,Peyrin F,Carrillon Y,et al.Automated 3D region growing algorithm based on an assessment function[J].Pattern Recognition Letters,2002,23:137-150.
  • 6Lee C, Hun S, Ketter T A, et al. Unsupervised connectivitybased thresholding segmentation of midsagittal brain MR images[J]. Computers in Biology and Medicine, 1998, 28(3): 309~338.
  • 7McInerney T, Terzopoulos D. Deformable models in medical image analysis: A survey [J]. Medical Image Analysis, 1996, 1(2): 91~108.
  • 8Orphanoudakis S C, Tziritas G, Haris K. A hybrid algorithm for the segmentation of 2D/3D images [A]. In: Proceedings of International Conference on Information Processing in Medical Imaging, Brest, 1995. 385~386.
  • 9Pohle R, Toennies K D. Segmentation of medical images using adaptive region growing [A]. In: Proceedings of SPIE,Boston, Massachusetts, 2001, 4322: 1337~1346.
  • 10Pohle R, Tonnies K D. A new approach for model-based adaptive region growing in medical image analysis [A]. In:Proceedings of the 9th International Conference on Computer Analysis and Patterns, Warsaw, 2001. 238~246.

共引文献88

同被引文献86

引证文献9

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部