期刊文献+

基于Kalman滤波器的室内激光/INS融合定位方法 被引量:2

Kalman filter based laser/INS fusion approach for indoor location
下载PDF
导出
摘要 讨论未知多边形室内环境下微型飞行器(MAV)的定位问题。利用惯性测量单元(IMU)测量飞行器运动参数,并计算飞行器的位置、航向。二维激光测距仪测量飞行器相对于障碍的位置,用迭代搜索/最小二乘算法匹配扫描数据,获得2次扫描的相对位移和转动。然后分析激光扫描匹配和惯性导航系统(INS)的误差,建立相应误差模型,并以此设计间接反馈校正Kalman滤波器。仿真结果显示,该激光/INS融合定位方法相比纯INS定位和无融合激光扫描匹配定位的精确度更高,并能将误差限制在一个较小的范围内。 This paper discusses the location problem of Micro Aerial Vehicles(MAV) in a unknown indoor environment. The motion parameters of the MAV can be measured by an Inertial Measurement Unit(IMU), from which the position and heading angle can be derived. A 2D Laser Range Finder(LRF) is adopted to measure the position of obstacles. The transform of two laser scans can be computed by matching the data of two scans using a search/least squares algorithm. The error analysis is performed for the laser scan matching and Inertial Navigation System(INS), and error models are built. An indirect feedback Kalman filter is designed based on these works. The simulation results indicate that the precision of fusion approach is higher than that of INS only location and that of laser scan matching only location. The error is limited to a small range.
出处 《信息与电子工程》 2012年第4期436-440,共5页 information and electronic engineering
基金 江苏省"333"人才基金资助项目
关键词 惯性导航系统 室内定位 KALMAN滤波器 激光测距仪 扫描匹配 Inertial Navigation System indoor location Kalman Filter Laser Range Finder scan matching
  • 相关文献

参考文献8

  • 1Markus Achtelik,Abraham Bachrach,He Ruijie,et al. Stereo Vision and Laser Odometry for Autonomous Helicopters in GPS-denied Indoor Environments[C]//Proceedings of SPIE,2009. Orlando,FL,USA:[s.n.], 2009:7332.
  • 2Iocchi L,Pellegrini STipaldi G D. Building multi-level planar maps integrating LRF,stereo vision and IMU sensors[C]// Proceedings of the 2007 IEEE International Workshop on Safety,Security and Rescue Robotics. Rome,haly:[s.n.], 2007:42-47.
  • 3Hesch J A,Mirzaei F M,Mariottini G L,et al. A Laser-Aided Inertial Navigation System(L-INS) for Human Localization in Unknown Indoor Environments[C]//1EEE International Conference on Robotics and Automation,2010. Anchorage,AK:[s.n.], 2010:5376-5382.
  • 4金峰,蔡鹤皋.机器人IMU与激光扫描测距传感器数据融合[J].机器人,2000,22(6):470-473. 被引量:11
  • 5张一,张合新,黄金峰,范金锁.基于INS/LAS组合末制导方法研究与仿真[J].现代电子技术,2010,33(19):50-53. 被引量:3
  • 6Lu Feng,Milios E. Robot Pose Estimation in Unknown Environments by matching 2D Range Scans[J]. Journal ot Intelligent and Robotic Systems, 1997,18(3):249-275.
  • 7俞济祥.Kalman滤波及其在惯性导航中的应用[M].西安:西北工业大学,1984.
  • 8戴高伟.GPS/INS组合车辆导航系统的两种卡尔曼滤波结构[J].信息与电子工程,2008,6(6):420-423. 被引量:3

二级参考文献14

  • 1杨晓东,韦锡华.基于不确定度的组合导航数据动态评定[J].信息与电子工程,2004,2(3):184-187. 被引量:3
  • 2潘爽,徐彬,马林立.组合导航系统的加权数据融合算法[J].兵工自动化,2006,25(10):1-2. 被引量:2
  • 3孙未蒙,骆振,郑志强.一种多约束条件下高超声速导弹对地攻击的三维最优变结构制导律[J].国防科技大学学报,2007,29(3):126-130. 被引量:11
  • 4[1]Nicholas Pears, Penelope Probert. An Optical Range Sensor for Mobile Robot Guidance. IEEE Int Conf on R&A 1995
  • 5[2]Pears N E, Probert P J. Active Triangulation Range Finder Design for Mobile Robots. In Proc IEEE Workshop onIntelligent Robots and Systems, 1992: 2047-2052
  • 6[3]Rioux M. Laser Range Finder Based on Synchronized Scanners. Applied Optics, 1984,23(21):3837-3844
  • 7[3]Kalman R E.A New Approach to Linear filter and Prediction Theory[J].Journal of Basic Eng.,1960,82D:35-45.
  • 8LOEBIS D,SUTTONR R,CHUDLEY J,et al.Adaptive tuning of a Kalman filtervia fuzzy logic for an intelligent AUV navigation system[J].Control Engineering Practice,2004(12):1531-1539.
  • 9刘培伟 黄春梅 马明龙 等.自适应Sage滤波在GPS/SINS组合导航中的应用.科技信息,2010,(1):809-811.
  • 10SAVAGE J C,O′NEAL J K,BROWN R A.Powered low cost autonomous attack system:cooperative,autonomous,wide-area search munitions with capability to serve as non-traditional ISR assets in a network-centric environment[J].Proceedings of SPIE,2005,5791:61-69.

共引文献14

同被引文献12

  • 1曲晓雷.基于ARM-Linux的空中机器人嵌入式飞控系统实现研究[D].南京:南京航空航天大学,2002.
  • 2Achtelik M,Bachrach A,He Ruijie,et al.Stereo vision andlaser odometry for autonomous helicopters in GPS-denied in-door environments[C]//SPIE.Proceedings of SPIE.Orlando,2009,733219-10.
  • 3Iocchi L,Pellegrini S,Tipaldi G D.Building multi-level pla-nar maps integrating LRF,stereo vision and IMU sensors[C]//IEEE International Workshop on Safety,Security and Res-cue Robotics.Rome,2007:1-6.
  • 4Hesch J A,Mirzaei F M,Mariottini G L,et al.A laser-aidedinertial navigation system(L-INS)for human localization inunknown indoor environments[C] // IEEE International Con-ference on Robotics and Automation.Anchorage,2010:5376-5382.
  • 5Besl P M,McKay N D.A method for registration of 3-Dshapes[J].IEEE Transactions on Pattern Analysis and Ma-chine Intelligence,1992?14(2):239-256.
  • 6Feng Lu,Evangelos Milios.Robot Pose Estimation in Unknown Environments by Matching 2D Range Scans[J]. Journal of Intelligent and Robotic Systems . 1997 (3)
  • 7Besl P J,McKay N D.A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1992
  • 8Hesch J A,Mirzaei F M,Mariottini G L,et al.A Laser-Aided Inertial Navigation System (L-INS)for Human Localization inUnknown Indoor Environments. IEEE International Conference on Robotics and Automation,2010 . 2010
  • 9Javier Gonzalez.Rafael Gutierrez, Mobile Robot Motion Estimation from a Range Scan Sequence. Proc of IEEE Int Conf on Robotics and Automation . 1997
  • 10I.J.Cox,J.B.Kruskal.On the Congruence of Noisy Images to Line Segment Models. Secon-dInternational Conference on Computer Vision . 1988

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部