期刊文献+

结核分枝杆菌同源重组基因敲除系统的构建和应用 被引量:6

Development and application of homologous recombination knockout system in Mycobacterium tuberculosis
原文传递
导出
摘要 【目的】结核分枝杆菌同源重组效率很低,突变株的构建需要半年之久。本研究的目的在于构建一种用于在结核分枝杆菌中进行基因快速敲除、且易于筛选的高效同源重组系统。【方法】野生型结核分枝杆菌转化含有SacB反向选择标记、且能诱导表达两种同源重组酶gp60和gp61的质粒pSL002。然后分别将靶基因的两个同源臂克隆入到含有hyg(潮霉素)抗性基因和gfp(绿色荧光蛋白)基因的重组质粒pSL001中,再将靶基因同源臂-loxP-hyg-gfp-loxP片段从pSL001切下,转化含有pSL002的野生型结核分枝杆菌,一步得到双交换突变株。再将含有SacB反向选择标记、且表达Cre重组酶的质粒pSL003转化入结核分枝杆菌双交换突变株中,切除两个loxP之间的hyg抗性基因和gfp基因,得到无痕缺失突变株。最后利用含有2%蔗糖的琼脂糖平板去除含有SacB反向选择标记的质粒pSL002和pSL003。【结果】在结核分枝杆菌中成功构建了高效同源重组系统,利用该系统构建了rv1364c、pstP跨膜区、pstP胞外区三个突变株,得到双交换突变株的效率为25%-62.5%,从双交换突变株得到无痕缺失突变株的效率为100%。通过gfp作为荧光标记基因,利用NightSea BlueStar蓝光手电筒和滤光眼镜,可以对平板上的基因缺失株直接进行快速判定。【结论】该同源重组系统利用gp60和gp61重组酶,在时间上将在结核分枝杆菌中无痕缺失突变株的构建从6个月缩短到3个月。这是目前为止在结核分枝杆菌中构建突变株最快且效率最高的方法,为加速分枝杆菌功能基因组的研究提供了新的遗传工具。 [Objective] We developed a homologous recombination system to make marker-free mutants in Mtb in an easy screening way.[Methods] The plasmid pSL002 harboring recE and recT-like protein gp60 and gp61 was transformed into wt Mtb in order to increase the recombing efficiency.The two homologous arms of target gene were amplified and cloned into pSL001.The purified homologous arms-loxP-gfp-hyg-loxP fragments were further transformed into Mtb(with pSL002 inside) competent cells to obtain the double cross over(DCO) mutants.The plasmid pSL003 was transformed into DCO competent cells to excise the two loxP sites flanked region.The plasmid pSL002 and pSL003 were removed via the counter selection marker sacB.[Results] An efficient homologous recombination system was developed.Three different marker free mutants: Rv1364c phosphatase domain,PstP extracellular domain and PstP transmembrane domain were created by the system developed in this study.The efficiency to obtain DCO was varying from 25% to 62.5%,while the efficiency from DCO to KO was close to 100%.The gfp reporter was used to screen SCO,DCO and KO.[Conclusion] The homologous system shortens the complicated screening process to 3 month in Mtb.This is the fastest allelic exchange system reported so far,providing novel deletion strategy to the repertoire of mycobacterial genetic tools for constructing unmarked mutations.
出处 《微生物学报》 CAS CSCD 北大核心 2012年第9期1151-1159,共9页 Acta Microbiologica Sinica
基金 国家"863计划"(2012AA101602) 国家自然科学基金(30800014) 浙江农林大学人才项目(2034020075)~~
关键词 结核分枝杆菌 同源重组 基因敲除 重组酶 荧光标记 Mycobacterium tuberculosis homologous recombination knock out recombinase fluorescence marker
  • 相关文献

参考文献19

  • 1WHO report 2011 global tuberculosis control. 2011: 1- 246.
  • 2Cole ST, Brosch R, Parkhill J, Garnier T, Chureher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE, 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K,Barrell BG. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 1998, 393 (6685) : 537-544.
  • 3Song H, Wolschendorf F, Niederweis M ( 2008 ) : Construction of unmarked deletion mutants in mycobacteria. In T. Parish, and A. Brown (Eds) : Mycobacteria protocols. Humana Press, Ottawa, pp. 279- 295.
  • 4Song H, Niederweis M. Functional expression of the Flp recombinase in Mycobacterium bovis BCG. Gene, 2007, 399 (2): 112-119.
  • 5Song H, Huff J, Janik K, Walter K, Keller C, Ehlers S, Bossmann SH, Niederweis M. Expression of the ompATb operon accelerates ammonia secretion and adaptation of Mycobacterium tuberculosis Molecular Microbiology, 2011 to acidic environments , 80 (4): 900-918.
  • 6Kessel JC, Hatfull Mycobacterium tuberculosis. (2) : 147-152 GF. Recombineering in Nature Methods, 2007, 4.
  • 7Wolschendorf F, Ackart D, Shrestha TB, Hascall-Dove L, Nolan S, Lamichhane G, Wang Y, Bossmann SH, Basaraba RJ,Niederweis M. Copper resistance is essential for virulence of Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences, 2011, 108 (4) : 1621-1626.
  • 8Guilhot C, Gicquel B, Martin C. Temperature-sensitive mutants of the Mycobacterium pIasmid pAL5000. FEMS Microbiology Letters, 1992, 77 (1-3): 181-186.
  • 9Gavigan JA, Guilhot C, Gicquel B, Martin C. Use of conjugative and thermosensitive cloning vectors for transposon delivery to Myeobacterium smegmatis. FEMS Microbiology Letters, 1995, 127 (1-2):35-39.
  • 10Guilhot C, Otal I, van Rompaey I, Martin C,Gicquel B. Efficient transposition in myeobacteria: construction of Myeobacterium smegmatis insertional mutant libraries. Journal of Bacteriology, 1994, 176 (2): 535-539.

同被引文献56

  • 1ZHAODehua LIJilun.Construction and characteri-zation of double mutants in nitrogenase of Klebsiella pneumoniae[J].Chinese Science Bulletin,2004,49(16):1707-1713. 被引量:5
  • 2Mehra S,Alvarez X,Didier PJ,et al.Granuloma correlates of protection against tuberculosis and mechanisms of immune modulation by Mycobacterium tuberculosis[J].J Infect Dis,2013,207(7):1115-1127.
  • 3Cohen T,van Helden PD,Wilson D,et al.Mixed-strain Mycobacterium tuberculosis infections and the implications for tuberculosis treatment and control[J].Clin Microbiol Rev,2012,25(4):708-719.
  • 4Black PA,Warren RM,Louw GE,et al.Energy metabolism and drug efflux in Mycobacterium tuberculosis[J].Antimicrob Agents Chemother,2014,58(5):2491-2503.
  • 5van Laarhoven A,Mandemakers JJ,Kleinnijenhuis J,et al.Low induction of proinflammatory cytokines parallels evolutionary success of modern strains within the Mycobacterium tuberculosis Beijing genotype[J].Infect Immun,2013,81(10):3750-3756.
  • 6Roberts LL,Robinson CM.Mycobacterium tuberculosis infection of human dendritic cells decreases integrin expression,adhesion and migration to chemokines[J].Immunology,2014,141(1):39-51.
  • 7World Health Organization. Global tuberculosis report 2014 [R]. Geneva: World Health Organization,2015.
  • 8Gouzy A, Larrouy-Maumus G, Bottai D,et al. Mycobacterium tuberculosis exploits asparagine to assimilate nitrogen and resist acid stress during infection [J/OL]. PLoS Pathog, 2014,10(2) :e1003928 (2014-02-020) [2015-12-13]. http..// journals, plos. org/plospathogens/article? id = 10. 1371/ journal, ppat. 1003928.
  • 9Kraus P, Sivakamasundari V, Xing X,et al. Generating mouse lines {or lineage tracing and knockout studies [J]. Methods Mol Biol, 2014,1194:37-62.
  • 10Gupta RM, Musunuru K. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9 [J]. J Clin Invest, 2014,124(10) ..4154-4161.

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部