期刊文献+

APPswe/PS△E9双转基因小鼠脑组织miRNA的表达 被引量:5

Expression profile of miRNAs in APP swe/PS△E9 transgenic mice
下载PDF
导出
摘要 目的观察APPswe/PS△E9双转基因小鼠与正常小鼠脑组织内miRNA的差异表达,探索miRNA在阿尔茨海默病中的可能作用。方法采用6月龄APPswe/PS△E9双转基因小鼠作为实验组,同月龄、同种系野生型小鼠C57作为对照组,基因芯片检测两组小鼠脑组织miRNA表达;比较两组小鼠miRNA的差异表达。结果与对照组比较,实验组中表达上/下调2倍以上的miRNA有miRNA-135a、miRNA-135a-2*、miRNA-298、miRNA-466b-3p、miR-669-3p、miR-142-5p、miR-144、miR-466f-3p、miR-466g、miR-200a、miR-200b、miR-96等12种,但有统计学意义(P<0.05)的均是下调的5种miRNA:miRNA-135a、miRNA-135a-2*、miRNA-298、miRNA-466b-3p和miR-669-3p。结论 miRNA-135a、miRNA-135a-2*、miRNA-298、miRNA-466b-3p和miR-669-3p可能是在APPswe/PS△E9双转基因小鼠发病中有意义的miRNA。 Objective To observe the changes of miRNA expression profiles in APPswe/PS△ E9 transgenic mice and explore the possible roles of miRNA in the pathogenesis of Alzheimer' s disease. Methods Using miRNA chip technique, we examined the miRNA expression in the brain tissue of 6-month-old APPswe/PS A E9 transgenic mice, with age-matched wild-type mice as the control group. Results Twelve miRNAs showed differential expressions by more than two folds in APPswe/PS A E9 transgenic mice, namely miRNA-135a, miRNA-135a-2*, miRNA-298, miRNA-466b-3p, miR-669-3p, miR-142-5p, miR-144, miR-466f-3p, miR-466g, miR-200a, miR-200b and miR-96. Five miRNAs were significantly down-regulated in the transgenic mice, including miRNA-135a, miRNA-135a-2*, miRNA-298, miRNA-466b-3p, and miR-669-3p. Conclusion The 5 down- regulated miRNA may play important roles in the pathogenesis of AD in APPswe/PS A E9 transgenic mice.
出处 《南方医科大学学报》 CAS CSCD 北大核心 2012年第9期1280-1283,共4页 Journal of Southern Medical University
基金 湖南省科技厅社会发展支撑计划课题(009SK3175 2012SK3218)
关键词 APPswe/PS△E9双转基因小鼠 ALZHEIMER病 MIRNA 基因芯片 APPswe/PS △ E9 transgenic mice Alzheimer' s disease microRNAs gene chip
  • 相关文献

参考文献15

  • 1Christensen M, Schratt GM. MicroRNA involvement in developmental and functional aspects of the nervous system and neurological diseases[J]. Neurosci Lett, 2009, 466(2): 55-62.
  • 2Junn E, Mouradian MM. MicroRNAs in neurodegenerative diseases and their therapeutic potential [J]. Pharmacol Ther, 2012, 133(2):142-50.
  • 3Satoh J. MieroRNAs and their therapeutic potential for human diseases: aberrant microRNA expression in Alzheimer's disease brains[J]. J Pharmacol Sci, 2010, 114(3): 269-75.
  • 4Provost P. MicroRNAs as a molecular basis for mental retardation, Alzheimer's and priori diseases[J]. Brain Res, 2010, 1338: 58-66.
  • 5Maes OC, Chertkow HM, Wang E, et al. MicroRNA: Implications for Alzheimer disease and other human CNS disorders [J]. Curr Genomics, 2009, 10(3): 154-68.
  • 6Peter T, Wang WX, Rajeev BW, MicroRNAs(miRNAs) in neurodegenerative diseases[J]. Brain Pathol, 2008, 18(1): 130-8.
  • 7Zhou ZD, Chan CH, Ma QH, et al. The roles of amyloid precursor protein(APP) in neurogenesis: Implications to pathogenesis and therapy of Alzheimeri disease[J]. Cell Adhesion Migration, 2011, 5 (4): 280-92.
  • 8Bettens K, Brouwers N, Engelborhs S, et al. APP and BACE1 miRNA genetic variability has no major role in risk for Alzheimer disease[J]. Hum Mutat, 2009, 30(8): 1207-13.
  • 9Hebert SS, Horre K, Nicolai L, et al. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/beta-secretase expression[J]. Proc Natl Acad Sci USA, 2008, 105(17): 6415-20.
  • 10Nelson PT, Wang WX. MiR-107 is reduced in Alzheimer's disease brain neocortex: validation study[J]. J Alzheimers Dis, 2010, 21(1): 75-9.

同被引文献54

  • 1吴越.阿尔茨海默病发生机制的microRNA水平研究进展[J].中国老年学杂志,2014,34(12):3506-3508. 被引量:5
  • 2Van Hoesen GW, Augustinack JC, Dierking J, et al. The parahippocampal gyms in Alzheimer's disease.Clinical and preclinical neuroanatomical correlates[J]. Ann N Y Acad Sci, 2000, 911: 254-74.
  • 3Wang HY, D'Andrea MR, Nagele RG. Cerebellar diffuse amyloid plaques are derived from dendritic Abeta42 accumulations in Purkinje cells[J]. Neurobiol Aging, 2002, 23(2): 213-23.
  • 4Sepulveda-Falla D, Matschke J, Bernreuther C, et al. Deposition of hyperphosphorylated tau in cerebellum of PSI E280A Alzheimer's disease[J]. Brain Pathol, 2011, 21(4): 452-63.
  • 5Mavroudis IA, Fotiou DF, Adipepe LF, et al. Morphological changes of the human purkinje cells and deposition of neuritic plaques and neurofibrillary tangles on the cerebellar cortex of Alzheimer's disease[J]. Am J Alzheimers Dis Other Demen, 2010, 25(7): 585-91.
  • 6Lomoio S, L6pez-Gonzilez I, Aso E, et al. Cerebellar amyloid-13 plaques: disturbed cortical circuitry in AI]PP/PS1 transgenic mice as a model of familial Alzheimer's disease [J]. J Alzheimers Dis, 2012, 31(2): 285-300.
  • 7Aso E, Lomoio S, L6pez-Gonzllez I, et al. Amyloid generation and dysfunctional immunoproteasome activation with disease progression in animal model of familial Alzheimer's disease [J]. Brain Pathol, 2012, 22(5): 636-53.
  • 8Yakushev I, Landvogt C, Buchholz HG, et al. Choice of reference area in studies of Alzheimer's disease using positron emission tomography with fluorodeoxyglucose-F18 [J]. Psychiatry Res, 2008, 164(2): 143-53.
  • 9Delay C, Mandemakers W, Hebert SS. MicroRNAs in alzheimer's diseas[J]. Neuorbio Dis, 2012, 46(2): 485-90.
  • 10Satoh J. Molecular network of microRNA targets in Alzheimer's disease brains[J]. Exp Neurol, 2012, 235(2): 436-46.

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部