期刊文献+

Recent developments in multivariate pattern analysis for functional MRI 被引量:5

Recent developments in multivariate pattern analysis for functional MRI
原文传递
导出
摘要 Multivariate pattern analysis(MVPA) is a recently-developed approach for functional magnetic resonance imaging(fMRI) data analyses.Compared with the traditional univariate methods,MVPA is more sensitive to subtle changes in multivariate patterns in fMRI data.In this review,we introduce several significant advances in MVPA applications and summarize various combinations of algorithms and parameters in different problem settings.The limitations of MVPA and some critical questions that need to be addressed in future research are also discussed. Multivariate pattern analysis(MVPA) is a recently-developed approach for functional magnetic resonance imaging(fMRI) data analyses.Compared with the traditional univariate methods,MVPA is more sensitive to subtle changes in multivariate patterns in fMRI data.In this review,we introduce several significant advances in MVPA applications and summarize various combinations of algorithms and parameters in different problem settings.The limitations of MVPA and some critical questions that need to be addressed in future research are also discussed.
出处 《Neuroscience Bulletin》 SCIE CAS CSCD 2012年第4期399-408,共10页 神经科学通报(英文版)
基金 supported by grants from the National Natural Science Foundation of China (30900366,31070905)
关键词 multivariate analysis FMRI pattern recognition computational biology multivariate analysis fMRI pattern recognition computational biology
  • 相关文献

参考文献77

  • 1Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 2001,293: 2425-2430.
  • 2Haynes JD, Rees G. Decoding mental states from brain activity in humans. Nat RevNeurosci 2006, 7: 523—534.
  • 3Kriegeskorte N, Goebel R, Bandettini P. Information-based functional brain mapping. Proc Natl Acad Sci U S A 2006, 103: 3863-3868.
  • 4O'Toole AJ, Jiang F, Abdi H, Penard N, Dunlop JP, Parent MA. Theoretical,statistical, and practical perspectives on pattern-based classification approaches to the analysis of functional neuroimaging data. J Cogn Neurosci 2007, 19: 1735-1752.
  • 5Haynes JD. Decoding and predicting intentions. Ann N Y Acad Sci2011, 1224: 9-21.
  • 6Kriegeskorte N. Pattem-information analysis: from stimulus decoding to computational-model testing. Neuroimage 2011, 56: 411-421.
  • 7Cox DD, Savoy RL. Functional magnetic resonance imaging (fMRI) "brain reading": detecting and classifying distributed patterns of fMRI activity in human visual cortex. Neuroimage 2003,19: 261-270.
  • 8Bandettini PA. What's new in neuroimaging methods? Ann N Y Acad Sci 2009, 1156: 260-293.
  • 9Mur M, Bandettini PA, Kriegeskorte N. Revealing representational content with pattem-information fMRI~an introductory guide. Soc Cogn Affect Neurosci 2009, 4: 101-109.
  • 10Kamitani Y, Tong F. Decoding the visual and subjective contents of the human brain. Nat Neurosci 2005,8: 679-685.

同被引文献57

  • 1Naselaris T, Kay K N, Nishimoto S, et al. Encoding and decoding in fmri[J]. Neuroimage, 2011,56(2) :400-410.
  • 2Kamitani Y, Tong F. Decoding the visual and subjective contents of the human brain[ J ]. Nature neuroscience, 2005,8 (5) : 679-685.
  • 3Norman K A, Polyn S M, Detre G J, et al. Beyond mind-reading: Muhi-voxel pattern analysis of fmri data[ J]. Trends in cognitive sciences, 2006,10 ( 9 ) : 424-430.
  • 4Kriegeskorte N, Bandettini P. Analyzing for information, not activation, to exploit high-resolution fmri [ J]. Neuroimage, 2007,38 ( 4 ) : 649-662.
  • 5Yacoub E, Harel N, Ugurbil K. High-field fmri unveils orientation columns in humans[ J]. Proceedings of the National Acad- emy of Sciences, 2008,105 (30) : 10607-10612.
  • 6Van Gerven MAJ, Kok P, De Lange FP, et al. Dynamic decoding of ongoing perception[ J]. Neuroimage, 2011,57(3 ) :950- 957.
  • 7LaConte S M. Decoding fmri brain states in real-time [ J ]. Neuroimage, 2011,56 (2) :440-454.
  • 8Haxby J V, Gobbini M I, Furey M L, et al. Distributed and overlapping representations of faces and objects in ventral tempo- ral cortex[J]. Science, 2001,293(5539) :2425-2430.
  • 9Carlson T A, Schrater P, He S. Patterns of activity in the categorical representations of objects[ J]. Journal of Cognitive Neu- roscience, 2003,15 ( 5 ) :704-717.
  • 10Cox D D, Savoy R L. Functional magnetic resonance imaging (fmri) "brain reading" : Detecting and classifying distributed patterns of fmri activity in human visual cortex [ J ]. Neuroimage, 2003,19 (2) :261-270.

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部