期刊文献+

简化蚁群算法 被引量:4

Simplified ant colony optimization algorithm
原文传递
导出
摘要 针对最大最小蚂蚁系统中信息素下界难以确定以及算法性能易受同构问题影响的缺点,提出一种简化蚁群算法,信息素的上下界被限制在一个固定的区间内,不随目标函数值的更新而改变;信息素的更新量是一个与具体目标函数值无关的常数,所提出的简化算法不仅具有强不变性和平移不变性,而且算法的性能不受信息素下界的影响。针对旅行商问题的仿真实验验证了改进算法的可行性和有效性。 Due to the shortcomings of max-min ant system(MMAS), which is difficult to decide the lower bound of pheromone trail and easy to affect by isomorphic problems, a simplifiedant colony optimization(SACO) algorithm is proposed. The upper and lower bound of pheromone trail are limited to a fixed interval and can not be changed with updating the objective function value. The added pheromone trail is a constant which is independent to the function value. It is proved that the algorithm not only has the property of linear transformational invariance and translational invariance, but also its performance is not affected by the lower bound of pheromone trail. Simulation results on the traveling salesman problem show the feasibility and effectiveness of the presented algorithm.
出处 《控制与决策》 EI CSCD 北大核心 2012年第9期1325-1330,共6页 Control and Decision
基金 国家自然科学基金项目(60875043 60905044) 教育部博士点基金项目(2010021110031)
关键词 最大最小蚂蚁系统 不变性 旅行商问题 max-min ant system: invariance: traveling salesman problem
  • 相关文献

参考文献11

  • 1Dorigo M, Stutzle T. Ant colony optimization[M]. Cambridge: MIT Press, 2004: 25-46.
  • 2Dorigo M, Maniezzo V, Colorni A. The ant system: Optimization by a colony of cooperating agents[J]. IEEE Trans on Systems, Man and Cybernetics, Part B, 1996, 26(1): 29-41.
  • 3Dorigo M, Gambardella L M. Ant colony system: A cooperative learning approach to the traveling salesman problem[J]. IEEE Trans on Evolutionary Computation, 1997, 1(1): 53-66.
  • 4Stutzle T, Hoos H H. Max-min ant system[J]. Future Generation Computer Systems, 2000, 16(9): 889-914.
  • 5张晓霞,唐立新.一种求解TSP问题的ACO&SS算法设计[J].控制与决策,2008,23(7):762-766. 被引量:16
  • 6熊伟清,魏平.二进制蚁群进化算法[J].自动化学报,2007,33(3):259-264. 被引量:52
  • 7黄国锐,曹先彬,王煦法.基于信息素扩散的蚁群算法[J].电子学报,2004,32(5):865-868. 被引量:76
  • 8Blum C, Dorigo M. The hyper-cube framework for ant colony optimization[J]. IEEE Trans on Systems, Man and Cybernetics, Part B, 2004, 34(2): 1161-1172.
  • 9Birattari M, Pellegrini P, Dorigo M. On the invariance of ant colony optimization[J]. IEEE Trans on Evolutionary Computation, 2007, 11(6): 732-742.
  • 10Matthews D. Improved lower limits for pheromone trails in ant colony optimization[C]. Parallel Problem Solving from Nature-PPSN X. Dortmund: Springer Press, 2008: 508- 517.

二级参考文献23

  • 1Dorigo M,et al.Ant system:optimization by a colony of cooperating agents[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B,1996,26(1):29-41.
  • 2Dorigo M,Gambardella L M.Ant colony system:a cooperative learning approach to the traveling salesman problem[J].IEEE Transactions on Evolutionary Computation,1997,1(1):53-66.
  • 3Dorigo M,et al.Guest editorial:special section on ant colony optimization[J].IEEE Transactions on Evolutionary Computation,2002,6(4):317-319.
  • 4Gambardella L M,Dorigo M.Solving symmetric and asymmetric TSPs by ant colonies[A].Proc.of the 1996 IEEE International Conference on Evolutionary Computation[C].Nagoya,Japan:ICEC'96,1996.622-627.
  • 5Dorigo M,Caro G D.Ant colony optimization:A new meta-heuristic.In:Proceedings of the 1999 Congress on Evolutionary Computation.Washington,DC,USA,1999,1470~1477.
  • 6Dorigo M,Gambardella L M.Ant colony system:A cooperative learning approach to the traveling salesman problem.IEEE Transactions on Evolutionary Computation,1997,1(1):53~66.
  • 7Michalewicz Z.Genetic Algorithms +Data Structures =Evolution Programs.Berlin Heidelberg:Springer-Verlag,1999
  • 8Stutzle T,Hoos H.The Max-Min ant system and local search for the traveling salesman problem.In:Proceedings of the IEEE International Conference on Evolutionary Computation and Evolutionary Programming.1997,309~314
  • 9Gutjahr,W J.ACO Algorithms with guaranteed convergence to the optimal solution.Information Processing Letters,2002,82(3):145~1538
  • 10Liu G, He Y, Fang Y, et al. A novel adaptive search strategy of intensification and diversification in tabu search [C]. Proc of Neural Networks and Signal Processing. Nanjing, 2003: 428-431.

共引文献134

同被引文献62

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部