期刊文献+

基于共轭先验分布的贝叶斯网络分类模型 被引量:4

Bayesian network classifier based on conjugate prior distribution
原文传递
导出
摘要 针对贝叶斯网络后验概率需计算样本边际分布,计算代价大的问题,将共轭先验分布思想引入贝叶斯分类,提出了基于共轭先验分布的贝叶斯网络分类模型,针对非区间离散样本,提出一种自适应的样本离散方法,将小波包提取模拟电路故障特征离散化作为分类模型属性,仿真验证表明,模型分类效果较好,算法运行速度得以提高,也可应用于连续样本和多分类的情况,扩展了贝叶斯网络分类的应用范围。 In order to reducing calculate costs of Bayesian network, when calculating posterior probability of samples that need the marginal distribution, an approach of Bayesian network classifier based on conjugate prior distribution is proposed. An adaptive discretization method is also proposed to discrete non-interval samples. The fault feature of analog circuit extracted by wavelet packet is taken as a discrete property of Bayesian network classification model. The simulation result shows that, this classifier has high accuracy and efficiency of analog circuit fault diagnosis, and can be applied to continuous and multi-classification case, which extends the scope of application of Bayesian network classification.
出处 《控制与决策》 EI CSCD 北大核心 2012年第9期1393-1396,1401,共5页 Control and Decision
基金 国家973计划项目(61355020301)
关键词 贝叶斯网 共轭先验分布 边际分布 模拟电路 故障诊断 Bayesian network conjugate prior distribution marginal distribution analog circuit fault diagnosis
  • 相关文献

参考文献7

  • 1Peter A Flach, Nicolas Lachiche. Naive Bayesian classification of structured data[J]. Machine Learning, 2004, 57(3): 233-269.
  • 2陈英武,高妍方.贝叶斯网络扩展研究综述[J].控制与决策,2008,23(10):1081-1086. 被引量:15
  • 3范敏,石为人.层次朴素贝叶斯分类器构造算法及应用研究[J].仪器仪表学报,2010,31(4):776-781. 被引量:9
  • 4Ceci M, Appice A, Malerba D. Mr-SBC: A multi-relational naive Bayes classifier[C]. Knowledge Discovery in Databases PKDD Lecture Notes in Artificial Intelligence. Paris: KDD, 2003, 2838: 95-106.
  • 5Friedman N, Koller D. Being Bayesian about network struchire: A Bayesian approach to structure discovery in Bayesian networks[J]. Machine Learning, 2002, 50(12):95-125.
  • 6Chickering D M. Learning equivalence classes of Bayesian-network structures[J]. J of Machine Learning Research, 2002(2): 445-498.
  • 7Koivisto M, Sood K. Exact Bayesian structure discovery in Bayesian networks[J]. J of Machine Learning Research, 2004, 2(5): 549-573.

二级参考文献46

  • 1史建国,高晓光.离散动态贝叶斯网络的直接计算推理算法[J].系统工程与电子技术,2005,27(9):1626-1630. 被引量:36
  • 2HAN J,KAMBER M.Data mining:Concepts and techniques[M].Beijing:China Higher Education Press,2001.
  • 3EGMONT-PETERSEN M,FEELDERS A,BAESENS B.Confidence intervals for probabilistic network classifiers[J],Computational Statistics and Data Analysis,2005,49:998-1019.
  • 4KEOGH E J,PAZZANI M J.Learning the structure augmented Bayesian classifiers[J].International Journal of Artificial Intelligence Tools,2002(11):587-601.
  • 5GYFTODIMOS E,FLACH P A.Hierarchical Bayesian networks:A probabilistic reasoning model for structured domains[C].Proceedings of the ICML-2002 Worksho Pon Development of Representations,University of New South Wales,2002.
  • 6ZHANG N L.Hierarchical latent class models for cluster analysis[R].Technical Report HKUST-CS02-02.Hong Kong University of Science & Technology,2002.
  • 7ZHANG N L,KOCKA T,KARCIAUSKAS G,et al.Learning hierarchical latent class models[R].Technical Report HKUST-CS03-01.Hong Kong University of Science & Technology,2003.
  • 8ZHANG N L,NIELSEN T D,JENSEN F V.Latent variable discovery in classification models[J].Artificial Intelligence in Medicine,2003,30(3):283-299.
  • 9CHICKERING D M,GEIGER D,HECKMAN D.Learning Bayesian networks:Search methods and experimental results[C].Proceedings of Fifth Conference on Artificial Intelligence and Statistics.Ft,Lauderdale,FL.Society for Artificial Intelligence in Statistics,1995:112-128.
  • 10LANGSETH H,NIELSEN T D.Classification using hierarchical nave Bayes models[J].Machine learning,2006.

共引文献22

同被引文献37

  • 1刘伯权,刘喜,吴涛.基于共轭先验分布的深受弯构件受剪承载力概率模型分析[J].工程力学,2015,32(4):169-177. 被引量:8
  • 2赵英刚,陈奇,何钦铭.一种基于支持向量机的直推式学习算法[J].江南大学学报(自然科学版),2006,5(4):441-444. 被引量:8
  • 3中华人民共和国国家质量监督检验检疫总局.测量不确定度评定与表示:JJFl059.1-2012[S].北京:中国质检出版社,2012.
  • 4ELSTER C. Bayesian uncertainty analysis compared with the application of the GUM and its supplements [ J ]. Metrologia, 2014,51 (4) :189 -200.
  • 5DESIMONI E, BRUNETTI B. Uncertainty of measurement and conformity assessment: a review [ J ]. Analytical and bio analytical chemistry, 2011,400 ( 6 ) : 1729 - 1741.
  • 6BATTISTELLI L, CHIODO E, LAURIA D. A new methodology for uncertainty evaluation in risk assessment: Bayesian estimation of a safety index based upon extreme values [ C ]//International Symposium on Power Electronics, Electrical Drives, Automation & Motion. IEEE ,2008:439 - 444.
  • 7IUCULANO G, NIELSEN L,ZANOBINI A, et al. The principle of maximum entropy applied in the evaluation of the measurement uncertainty [ J ] . IEEE transactions on instrumentation & measurement,2007,56 ( 3 ) :717 - 722.
  • 8ZHANG X M, ZHANG H Z. Uncertainty analysis for pump test based on maximum entropy and Monte Carlo method[C]//Proceedings of 2010 IEEE the 17th International Conference on Industrial Engineering and Engineering Management. 2010 : 1628 - 1631.
  • 9FANG X, SONG M. Estimation of maximum-entropy distribution based on genetic algorithms in evaluation of the measurement uncertainty [ C ]//Intelligent Systems (GCIS) ,2010 Second WRI Global Congress on IEEE. 2010 : 292 - 297.
  • 10SAID A B, SHAHZAD M K,ZAMAI E,et al. Experts' knowledge renewal and maintenance actions effectiveness in high- mix low-volume industries ,using Bayesian approach[ J]. Cognition technology & work ,2016,18 (1) :193 -213.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部