期刊文献+

拥挤距离排序的多目标文化粒子群优化算法 被引量:5

Cultural based multi-objective particle swarm optimization algorithm using crowding distance sorting method
原文传递
导出
摘要 为解决工程优化设计问题,引入文化进化框架,提出一种拥挤距离排序的多目标文化粒子群算法,采用拥挤距离排序算子,并删除密集区域的多余粒子,以保证Pareto前沿的分布均匀性;基于拥挤距离值,从精英知识和条件知识中选择处于最分散区域的粒子,并将其分别作为全局和局部最优,以增强算法全局寻优能力;依据拥挤距离的变化,动态调整粒子群飞行参数,以提高算法收敛效率,通过标准测试问题以及与其他算法的对比,表明了所提出算法的有效性和鲁棒性。 To solve the engineering design problems, by introducing cultural evolution framework, a cultural based multiobjective particle swarm optimization algorithm with crowding distance sorting is proposed. The redundant particles in the crowded area are deleted with the distance sorting operator to guarantee the elitism's uniform distribution. With the distance value, the global and local best of the particles are selected from the most disperse region in the elitism and situational knowledge, respectively, so as to enhance its global searching capability. The evolution parameters are adjusted dynamically according to the changing of distance to improve the convergence speed. Some standard test problems and the comparison with other algorithms show the effectiveness and robustness of the algorithm.
出处 《控制与决策》 EI CSCD 北大核心 2012年第9期1406-1410,共5页 Control and Decision
基金 国家自然科学基金项目(51005237) 中国博士后科学基金项目(20100471407) 江苏高校优势学科建设工程项目(PAPD)
关键词 文化粒子群算法 多目标进化算法 自适应参数调整 拥挤距离 cultural based particle swarm optimization multi-objective evolutionary algorithm paramters self-adaptiveadjustment crowding distance
  • 相关文献

参考文献9

  • 1Goh C K, Tan K C, Liu D S, et al. A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design[J]. European J of Operational Research, 2010, 202(1): 42-54.
  • 2Kennedy J, Eberhart R C. Particle swarm optimization[C]. Proc of IEEE Int Conf on Neutral Networks. Perth: IEEE, 1995, 4: 1942-1948.
  • 3Li X D. A nondominated sorting particle swarm optimizer for multiobjective optimization[C]. Proc of Genetic and Evolutionary Computation. Berlin: Springer, 2003, 7: 37- 48.
  • 4Deb K, Pratap A, Agarwal S. A fast-and elitist multi- objective genetic algorithm: NSGA-II[J]. IEEE Trans on Evolutionary Computation, 2002, 6(2): 182-197.
  • 5Li Z K, Zhu Z C, Zhang H Q. DSMOPSO: A distance sorting based multiobjective particle swarm optimization algorithm[C]. Proc of the 6th Int Conf on Natural Computation. Yantai, IEEE Computer Society, 2010, 5: 2749-2753.
  • 6施展,陈庆伟.基于QPSO和拥挤距离排序的多目标量子粒子群优化算法[J].控制与决策,2011,26(4):540-547. 被引量:31
  • 7Daneshyari M, Yen G G. Cultural MOPSO: A cultural framework to adapt parameters of multiobjective particle swarm optimization[C]. IEEE Congress on Evolutionary Computation. Hong Kong, 2008: 1325-1332.
  • 8Ricardo L B, Carlos A C C. Cultured differential evolution for constrained optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(7): 4303- 4322.
  • 9Zitzler E, Deb K, Thiele L. Comparison of multi-objective evolutionary algorithms: Empirical results[J]. IEEE Trans on Evolutionary Computation, 2000, 18(2): 173-195.

二级参考文献17

  • 1Deb K. Multi-objective optimization using evolutionary algorithms[M]. Chichester: Wiley, 2001.
  • 2Sierra M R, Coello C A C. Multi-objective particle swarm optimizers: A survey of the state-of-the-art[J]. Int J of Comoutational Intellizence Research, 2006, 2(3): 287-308.
  • 3Coello C A C, Lechuga M S. MOPSO: A proposal for multiple objective particle swarm optimization[C]. IEEE Congress on Evolutionary Computation. Piscataway: IEEE Press, 2002: 1051-1056.
  • 4Raquel C R, Jr P C N. An effective use of crowding distance in multiobjective particle swarm optimization[C].Proc of the 2005 Workshops on Genetic and Evolutionary Computation. Washington: ACM Press, 2005: 257-264.
  • 5Pulido G T, Coello C A C. Using clustering technique to improve the performance of a multi-objective particle swarm optimizer[J]. Lecture Notes on Computer Science, 2004, 3102: 225-237.
  • 6Lechuga M S, Rowe J. Particle swarm optimization and fitness sharing to solve multi-objective optimization problems[C]. IEEE Congress on Evolutionary Computation. Edinburgh: IEEE Press, 2005:1204-1211.
  • 7Coello C A C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization[J]. IEEE Trans on Evolutionary Computation, 2004, 8(3): 256-279.
  • 8Yen G G, Leong W E Dynamic multiple swarms in multiobjective particle swarm optimization[J]. IEEE Trans on Systems, Man and Cybernetics, Part A, 2009, 39(4): 890-911.
  • 9Li Z Y, Xu K, Liu S B, et al. Quantum multi-objective evolutionary algorithm with particle swarm optimization method[C]. The 4th Int Conf on Natural Computation. Ji'nan, 2008: 672-676.
  • 10Omkar S N, Khandelwal R, Ananth T V S, et al. Quantun behaved particle swarm optimization(QPSO) for multi- objective design optimization of composite structures[J] Expert Systems with Applications, 2009, 36(8): 11312- 11322.

共引文献30

同被引文献57

引证文献5

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部