期刊文献+

一种基于Renyi信息增量的机动目标协同跟踪方法 被引量:8

A method of maneuvering target collaboration tracking based on Renyi information gain
原文传递
导出
摘要 针对传感器网络中的动态跟踪问题,提出一种基于Renyi信息增量的机动目标协同跟踪方法,首先利用粒子滤波计算每个传感器Renyi信息增量;然后以Renyi信息增量最大为原则选择传感器进行目标跟踪,并在跟踪时通过多模型的交互作用实现对机动目标状态的准确估计,仿真结果表明,在非线性非高斯环境下,所提出的方法与传统方法相比能够有效提高跟踪精度,动态分配传感器资源,实现协同跟踪。 Focusing on the dynamic tracking problem in sensor networks, a maneuvering target collaboration tracking method based on Renyi information gain is proposed. Firstly, the particle filtering algorithm is applied to obtain the Renyi information gain of each sensor. Then, the sensor is selected according to the maximal Renyi information gain. Moreover, the kinematics state of the maneuvering target is estimated by interacting multiple model method. Simulation results show that the proposed method can achieve the desired tracking accuracy compared with traditional methods in a nonlinear nonGaussian system.
作者 刘钦 刘峥
出处 《控制与决策》 EI CSCD 北大核心 2012年第9期1437-1440,共4页 Control and Decision
基金 长江学者和创新团队发展计划课题(IRT0645) 中央高校基本科研业务费专项资金项目(K5051202036)
关键词 传感器网络 信息论 协同跟踪 粒子滤波 sensor network information theoretic collaboration tracking: particle filte
  • 相关文献

参考文献9

  • 1Alfred O Hero, Christopher M Kreucher. Network sensor management for tracking and localization[C]. Int Conf on Information Fusion. Quebec: IEEE Press, 2007: 1-8.
  • 2Christopher M Kreucher, Alfred O Hero, Keith D Kastella, et al. An information-based approach to sensor management in large dynamic networks[J]. Proc of the IEEE, 2007, 95(5): 978-999.
  • 3Mclntyre G A, Hintz K J. Information theoretic approach to sensor scheduling[C]. SPIE Prec. Orlando: SPIE, 1996: 304-312.
  • 4Sehmaedeke Wayne, Kastella Keith. Information based sensor management and IMMKF[C]. SPIE Proc. Orlando: SPIE, 1998: 390-401.
  • 5胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 6Jason M A, Brian R L C. Metric selection for information theoretic sensor management[C]. The 11th Int Conf on Information Fusion. Las Vegas: IEEE Press, 2008: 1-8.
  • 7Christopher M Kreucher, Kastella K, Alfred O Hero Sensor management using an active sensing approach[J] Signal Processing, 2005, 85(3): 607-624.
  • 8Mazor E, Dayan J, Bar-Shalom Y. Interacting multiple model in target tracking: A survey[J]. IEEE Trans on Aerospace and Electronics, 1998, 34(1): 103-123.
  • 9胡洪涛,敬忠良,李安平,胡士强.非高斯条件下基于粒子滤波的目标跟踪[J].上海交通大学学报,2004,38(12):1996-1999. 被引量:54

二级参考文献8

  • 1Lerro D, Bar-Shalom Y. Tracking with debiased consistent converted measurements versus EKF[J]. IEEE Trans AES, 1993, 29(3) :1015-1022.
  • 2Julier S, Uhlmann J. Unscented filtering and nonlinear estimation[J]. Proceedings of IEEE, 2004, 192(3): 401-422.
  • 3Kostantinos N P, Dimitris H. Advanced signal processing handbook [M]. Boca Raton: CRC Press LLC, 2001.
  • 4Doucet A, Freitas J F G, Gordon N J. Sequential Monte Carlo methods in practice [M]. New York: Springer,2001.
  • 5Sanjeev M, Maskell S. A tutorial on particle filters for online nonlinear/non-Gaussian bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002,50(2):174-188.
  • 6Gordon N J, Salmond D, Smith A. Novel approach to nonlinear and non-Gaussian Bayesian state estionation[J]. Proc Inst Elect Eng F, 1993,140(2):107-113.
  • 7Bar-Shalom Y, Li X R. Estimation with applications to tracking and navigation[M]. New York: Artech House. 2001.
  • 8莫以为,萧德云.基于粒子滤波算法的混合系统监测与诊断(英文)[J].自动化学报,2003,29(5):641-648. 被引量:34

共引文献332

同被引文献70

引证文献8

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部