期刊文献+

一类高阶抛物型方程组的爆破速率估计

The Estimation of Blow-up Rate for Higher-order Parabolic Equations
下载PDF
导出
摘要 研究一类高阶抛物型偏微分方程解的爆破性质,通过Scaling方法得出了其爆破解的爆破速率估计,与相应常微分方程比较可知,所得结果中爆破速率指数是最优的,所得结果也与方程组反应项的指数为某些特殊值时前人所得结果一致。 This paper studies the blow-up properties of higher-order parabolic partial differential equations. The author obtains the blow-up rate of blow-up solution by scaling method. The blow-up rate is optimal and consistent with the former results for the cases of some special indexes.
作者 张岩
出处 《西华大学学报(自然科学版)》 CAS 2012年第5期57-59,共3页 Journal of Xihua University:Natural Science Edition
关键词 高阶抛物型方程组 爆破 爆破速率 higher-order parabolic equations blow up blow-up rate
  • 相关文献

参考文献8

  • 1Peletier L A, Troy W C. Spatial Patterns : Higher Order Models in Physics and Mechanics [ M]. Boston :BirkhA auser Boston, 2001.
  • 2Galaktionov V A , Pohozaev S I. Existence and Blow - up for Higher - order Semi Linear Parabolic Equations : Majorizing Order - pre- serving Operators [J]. Indiana Univ. Math. J, 2002, 51 (6) : 1321 - 1338.
  • 3Pang P Y H, Sun F Q, Wang M X. Existence and Non - exist- ence of Global Solution for a Higher - order Semilinear Parabolic System [J]. Indiana Univ. Math. J, 2006, 55(3) : 1113 - 1134.
  • 4Pan H J , Xing R. Blow - up Rates for Higher - order Semilin- ear Parabolic Equations and Systems and some Fujita - type Theorems [J]. J. Math. Anal. Appl, 2008, 339:248 -258.
  • 5Yu Lan WANG,Ying WANG,Zhao Yin XIANG.A Liouville-Type Theorem for Higher-Order Parabolic Inequalities and Its Applications[J].Journal of Mathematical Research and Exposition,2011,31(5):930-936. 被引量:1
  • 6Giga Y, Kohn R V. Characterizing Blow - up Using Similarity Variables [ J]. Indiana Univ. Math. J, 1987, 36:1 -40.
  • 7Andreucci D, Herrero M A, Velazquez J J L. Liouville Theo- rems and blow up Behaviour in Semilinear Reaction Diffusion Systems [J]. Ann. Inst. H. Poincare Anal. Non Lineaire, 1997, 14:1 -53.
  • 8Fila M, Quittner P. The Blow - Up Rate for a Semilinear Para- bolic System [ J ]. Journal of Mathematical Analysis and Applications, 1999, 238:468-476.

二级参考文献14

  • 1KARTSATOS A G, KURTA V V. On a Liouville-type theorem and the Fujita blow-up phenomenon [J]. Proc. Amer. Math. Soc., 2004, 132(3): 807-813.
  • 2FUJITA tI. On the blowing up of solutions to the Cauchy problem for ue = Au+u^1+α [J]. J. Fac. Sci. Univ. Tokyo, Sect. 1A Math., 1966, 13: 109-124.
  • 3HAYAKAWA K. On nonexistence of global solutions of some semilinear parabolic differential equations [J]. Proc. Japan Aead., 1973, 49: 503-505.
  • 4JIANG Zhaoxin, ZHENG Sining. A Liouville-type theorem for a doubly degenerate parabolic inequality [J]. Acta Math. Sci. Ser. A Chin. Ed., 2010, 30(3): 639-643.
  • 5MITIDIERI E, POKHOZHAEV S I. A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities [J]. Tr. Mat. Inst. Steklova, 2001, 234: 1-384. (in Russian).
  • 6XIANG Zhaoyin, MU Chunlai, DU Lili. A Liouville-type theorem for a system of parabolic inequalities and its applications [J]. Appl. Math. Lett., 2007, 20(9): 976-981.
  • 7MITIDIERI E, POHOZAEV S I. Nonexistence of weak solutions for some degenerate elliptic and parabolic problems on R^n [j]. j. Evol. Equ., 2001, 1(2): 189-220.
  • 8PICCIRILLO A M, TOSCANO L, TOSCANO S. Blow-up results for a class of first-order nonlinear evolution inequalities [J]. J. Differential Equations, 2005, 212(2): 319-350.
  • 9PELETIER L A, TROY W C. Spatial Patterns: Higher Order Models in Physics and Mechanics [M]. Birkhauser. Boston. MA. 2001.
  • 10GALAKTIONOV V A, POHOZAEV S I. Existence and blow-up for higher-order semilinear parabolic equa- tions: majorizing order-preserving operators [J]. Indiana Univ. Math. J., 2002, 51(6): 1321-1338.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部