期刊文献+

具定号系数多滞量AFDE的振动性 被引量:1

Oscillation of AFDE with Cotion and Many Delays
下载PDF
导出
摘要 讨论了一类具有定号系数多滞量的超前型泛函微分方程解的振动性,得到方程x′(t)=∑ni=1pi(t)x(t+τi)(t≥t0)振动的"sharp"条件,并通过实例验证了所给结果的有效性. This paper disuesses oscillations of pre-kind function differentinal equation with cotion,and obtains sharp conditions of equation x′(t)=∑ni=1pi(t)x(t+τi)(t≥t0)The effectiveness is proved by examples.
出处 《吉首大学学报(自然科学版)》 CAS 2012年第4期1-5,共5页 Journal of Jishou University(Natural Sciences Edition)
基金 国家自然科学基金资助项目(10771129) 陕西省教育厅自然科学基金资助项目(10BZ30)
关键词 定号系数 超前型 泛函微分方程 振动性 cotions pre-kind function differential equation oscillation
  • 相关文献

参考文献3

  • 1郑祖麻.泛函微分方程理论[M].合肥:安徽教育出版社,1994.
  • 2LADAS G, ST, AVROULAKIS I P. Oscillations Caused by Several Retarded and Advanced Arguments[J]. J. Diff. Equa. ,1982(44) :134 - 152.
  • 3秦宏立.一类AFDE的振动性及其应用[J].西南民族大学学报(自然科学版),2010,36(6):885-889. 被引量:3

二级参考文献2

  • 1LADAS G,STAVROULAKIS I P.Oscillations caused by several retarded and advanced arguments[J].J Diff Equa,1982(44):134-152.
  • 2KUSANO T.On even order functional differential equation with advanced and retarded arguments[J].J Differential Equation,1982(45):75-84.

共引文献9

同被引文献6

  • 1G LADAS,I P STAVROULAKIS. Oscillations caused by several retarded and advanced arguments[J]. J Diff Equa, 1982(44):134-152.
  • 2BINGTUAN LI. Oscillations of delay differential equation with variable coefficients[J]. J Math Anal Appl,1995(192): 312-321.
  • 3R G KOPLATADZE, T A Chanturria. On oscillatoiy and monotone solutions of first order differential equations with deviatingarguments[J], J Diff Equa, 1982(18):1463-1465.
  • 4XIANYI LI, DEMING ZHU. Oscillations and nonoscillation of advanced differential equations with variable coefficients[J]. J MathAnal Appl, 2002,269(2): 462-488.
  • 5T KUSANO. On even order functional differential equation with advanced and retarded arguments[J]. J Diff Equa, 1982(45):75-84.
  • 6秦宏立.一类AFDE的振动性及其应用[J].西南民族大学学报(自然科学版),2010,36(6):885-889. 被引量:3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部