期刊文献+

时标上2阶动态方程非线性边值问题

Nonlinear Boundary Value Problem for Second Order Dynamic Equations on Time Scales
下载PDF
导出
摘要 研究了时标上一类2阶动态方程的非线性边值问题,利用2个算子和的不动点定理,得到非线性边值问题至少存在1个解的充分条件. This paper deals with the nonlinear boundary value problem for the second order dynamic equa- tions on time scales. Using fixed-point theorem for the sum of two operators, some sufficient conditions are obtained to guarantee the existence of at least one solution of the boundary value problem.
作者 钟文勇
出处 《吉首大学学报(自然科学版)》 CAS 2012年第4期6-10,共5页 Journal of Jishou University(Natural Sciences Edition)
基金 湖南教育厅科学研究项目(10C1125)
关键词 时标 动态方程 非线性边值问题 不动点 time scales dynamic equation nonlinear boundary value problem fixed point
  • 相关文献

参考文献6

  • 1HILGER S. Analysis on Measure Chain-A Unified Approach to Continuous and Discrete Calculus [J]. Journal of Re- sults Math. ,1990,18:18 - 56.
  • 2BOH NER M, PETERSON A. Dynamic Equations on Time Scales[ M]. Boston: Birkhauser, 2001.
  • 3SHENG Q,FADAG M. An Exploration of Combined Dynamic Derivatives on Time Scales and Their Applications [J]. Nonlinear Analysis : Real World Applications, 2006,7 (3): 395 - 413.
  • 4ATICI F M,BILES D C,LEBEDINSKY A. An Application of Time Scales to Economics [J]. Math. Compu. Model- ling,2006,43(7 - 8) : 718 - 726.
  • 5钟文勇,阮炯.时标上二阶脉冲动态方程的非局部边值问题[J].复旦学报(自然科学版),2009,48(2):245-252. 被引量:1
  • 6O'REGAN D. Fixed-Point Theory for the Sum of Two Operators [J]. Appl. Math. Lett. ,1995,9(1):1 -8.

二级参考文献11

  • 1Hilger S. Analysis on measure chains-a unified approach to continuous and discrete calculus[J]. Results Math, 1990, 18: 18-56.
  • 2Bohner M, Peterson A. Dynamic equations on time scales, an introduction with applications[M]. Boston: Birkhauser, 2001.
  • 3Sheng Q, Fadag M. An exploration of combined dynamic derivatives on time scales and their applications [J]. Nonlinear Analysis : Real World Applications, 2006, 7(3) : 395-413.
  • 4Atici F M, Biles D C, Lebedinsky A. An application of time scales to economics[J]. Math Compu Modelling, 2006, 43(7-8): 718-726.
  • 5Lakshmikantham V, Bainov D D, Simenov P S. Theory of impulsive differential equations[M]. Singpore: World Scientific, 1995.
  • 6Benchohra M, Ntouyas S K, Ouahab A. Existence results for second order boundary value problem of impulsive dynamic equations on time scales[J]. J Math Anal Appl, 2004, 296(1) : 65-73.
  • 7Geng Fengjie, Zhu Deming, Lu Qiuying. A new existence result for impulsive dynamic equations on time scales[J]. Appl Math Lett, 2007, 20(2) : 206-212.
  • 8Henderson J. Double solutions of impulsive dynamic boundary value problem on a time scale[J]. J Difference Equ Appl , 2002, 8: 571-585.
  • 9Chang Yongkui, Li Wantong. Existence results for impulsive dynamic equations on time scales with nonlocal initial conditions[J]. Math Comput Modelling, 2006, 43(3-4) : 377-384
  • 10O'Regan D. Fixed-point theory for the sum of two operators[J]. Appl Math Lett, 1995, 9(1): 1-8.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部