期刊文献+

活性炭负载的纳米金催化剂上葡萄糖氧化工艺 被引量:4

Technology of Glucose Oxidation over Au/C Catalyst
下载PDF
导出
摘要 采用溶胶固定法制备了一系列的Au/C纳米催化剂,进行了透射电镜(TEM)表征,用于常压下以氧气为氧化剂碱性溶液中葡萄糖氧化制备葡萄糖酸钠,并对最佳的催化剂进行了反应条件影响考察。结果显示,使用溶胶固定法制备的质量分数为1%的Au/C催化效果最佳,纳米金颗粒直径小于2 nm且分布均匀,其较佳反应条件为50℃,pH 9.5,氧气流量40 mL/min,催化剂0.22 g,水溶液中质量分数为7.5%的葡萄糖,葡萄糖在1 h内,选择性及转化率均可同时达到100%,反应的转化频率(Turnover Frequency,TOF)高达1 560 h-1。上述研究表明溶胶固定法能制备一定纳米金颗粒大小的Au/C催化剂,且在该多相催化剂上反应时间短,活性高,选择性高。 A series of Au/C nano-catalyst were prepared with sol-immobilization (SI) method and characterized under Transmission Electron Microscopy(TEM). The performance of the catalyst was evaluated on the oxidation reaction of glucose to sodium gluconate in alkaline solutions with oxygen as the oxidant under atmospheric pressure at various operating conditions. The results show that 1.0% Au/C SI prepared catalyst with less than 2 nm uniformly distributed gold nanoparticles has the best reaction performance. A preferred set of reaction condition is 50 ℃, pH 9.5, the oxygen flow rate of 40 mL/min, catalyst 0.22 g, glucose concentration in the aqueous solution of 7.5%. At 1 h reaction time, both the glucose conversion and sodium gluconate selectivity are about 100%, and reaction turnover frequency (TOF) is up to 1 560 h^-1 . The above studies indicate that, SI method can make Au/C catalyst with a certain size of gold nanoparticles; the prepared catalyst has high activity and high selectivity, resulting in a short reaction time in heterogeneous reactions..
出处 《化学反应工程与工艺》 CAS CSCD 北大核心 2012年第3期200-205,共6页 Chemical Reaction Engineering and Technology
基金 浙江省自然科学基金(Y4080247) 浙江省自然科学基金杰出青年团队(R40903580)
关键词 葡萄糖氧化金 碳催化剂 纳米金颗粒 glucose oxidation Au/C catalyst gold nanoparticle
  • 相关文献

参考文献12

  • 1Auer E, Freund A, Pietsch J, et al. Carbons as supports fbr industrial precious metal catalysts [J]. Applied Catalysis A: General, 1998, 173(2):259-271.
  • 2Biella S, Castiglioni G L, Fumagalli C, et al. Application of gold catalysts to selective liquid phase oxidation [J]. Catalysis Today, 2002, 72(1-2):43-49.
  • 3Biella S, Prati L, Rossi M Selective oxidation of D-glucose on gold catalyst [J]. Journal of Catalysis, 2002, 206(2):242-247.
  • 4李品将,董守安,唐春,杨生春,顾永万,李楷中.高分散的炭载Au纳米催化剂的制备、表征和催化活性[J].化学学报,2006,64(11):1140-1144. 被引量:20
  • 5陈宗杰,王敬锋,陈先明.金催化剂催化氧化葡萄精研究[J].化工州刊,2008,22(8):22-23.
  • 6Hermans S, Deffernez A, Devillers M. Au-Pd/C catalysts tbr glyoxal and glucose selective oxidations [J]. Applied Catalysis A: General, 2011, 395(1-2):19-27.
  • 7Mirescu A, Prusse U. A new environmental friendly method for the preparation of sugar acids via catalytic oxidation on gold catalysts [J]. Applied Catalysis B: Environmental, 2007, 70(1-4):644-652.
  • 8Thielecke N, Aytemir M, Prusse U. Selective oxidation of carbohydrates with gold catalysts:continuous-flow reactor system for glucose oxidation [J]. Catalysis Today, 2007, 121 ( 1-2): 115-120.
  • 9Thielecke N, Vorlop K D, Prusse U. Long-term stability of an Au/AI203 catalyst prepared by incipient wetness in continuous-flow glucose oxidation [J]. Catalysis Today, 2007, 122(3-4):266-269.
  • 10Beltrame P, Comotti M, Della P C, et al. Aerobic oxidation of glucose lI: catalysis by colloidal gold [J]. Applied Catalysis A:General, 2006, 297(1 ):1-7.

二级参考文献15

  • 1Corti,C.W.; Holliday,R.J.; Thompson,D.T.Gold Bull.2002,35,111.
  • 2Haruta,M.; Date,M.Appl.Catal,A 2001,222,427.
  • 3Thompson,D.T.Gold Bull.1998,31,111.
  • 4Thompson,D.T.Gold Bull.1999,32,12.
  • 5Maye,M.M.; Luo,J.; Han,L.; Kariuki,N.N.; Zhong,C.-J.Gold Bull.2003,36,75.
  • 6Prati,L.; Rossi,M.J.Catal.1998,176,552.
  • 7Prati,L.; Martra,G.Gold Bull.1999,32,96.
  • 8Porta,F.; Prati,L.; Rossi,M.; Coluccia,S.; Martra,G.Catal.Today 2000,61,165.
  • 9Biella,S.; Prati,L.; Rossi,M.J.Catal.2002,206,242.
  • 10Frens,G.Nature Phys.Sci.1973,241,20.

共引文献19

同被引文献80

  • 1孙剑辉,祁巧艳,杨明耀.纳米TiO_2/AC光催化降解罗丹明B废水的研究[J].工业水处理,2005,25(6):37-39. 被引量:15
  • 2李品将,董守安,唐春,杨生春,顾永万,李楷中.高分散的炭载Au纳米催化剂的制备、表征和催化活性[J].化学学报,2006,64(11):1140-1144. 被引量:20
  • 3Lei Wang, Dan Yang, Jin Wang, et al. Ambient tempe- rature CO oxidation over gold nanoparticles ( 14 nm) sup- ported on Mg(OH) z nanosheets [ J ]. Catalysis Communi- cations, 2013, 36: 38-42.
  • 4Ruihui Liu, Nansha Gao, Feng Zhen,et al. Doping effect of Al2O3 and CeO2 on Fe2O3 support for gold catalyst in CO oxidation at low-temperature[ J ]. Chemical Engineer- ing Journal, 2013, 225: 245-253.
  • 5Wang L C, Tahvildar Khazaneh M, Widmann D, et al. TAP reactor studies of the oxidizing capability of CO2 on a Au/CeO2 catalyst -A first step toward identifying a redox mechanism in the reverse water-gas shift reaction [ J ].Journal of Catalysis, 2013, 302 : 20-30.
  • 6Liu Xiao-yu, Guo Ping-jun, Wang Bin, et al. A compa- rative study of the deactivation mechanisms of the Au/ CeO2 catalyst for water-gas shift under steady-state and shutdown/start-up conditions in realistic reformate [ J ]. Journal of Catalysis, 2013, 300 : 152-162.
  • 7Gil S, Marchena M, Sanehez-Silva L, et al. Effect of the operation conditions on the selective oxidation of glycerol with catalysts based on Au supported on carbonaceous materials [ J ]. Chem, ical Engineering Journal, 2011, 178 : 423-435.
  • 8Gil S, Munoz L, Sanchez-Silva L, et al. Synthesis and characterization of Au supported on carbonaceous materi- al-based catalysts for the selective oxidation of glycerol [ J ]. Chemical Engineering Journal, 2011, 172 ( 1 ) : 418-429.
  • 9Zhan Guo-wu, Huang Jia-le, Du Ming-ming, et al. Li quid phase oxidation of benzyl alcohol to benzaldehyde with novel uncalcined bioreduction Au catalysts: High ac- tivity and durability [ J ]. Chemical Engineering Journal, 2012, 187: 232-238.
  • 10Ma Shu-qi, Li Gang, Wang Xiang-sheng. Direct synthe- sis of hydrogen peroxide from H2/O2 and oxidation of thi- ophene over supported gold catalysts[ J ]. Chemical Engi- neering Journal, 2010, 156(3): 532-539.

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部