摘要
本文用n维欧氏空间R^n中的隐函数定理研究等式约束问题的最优性必要条件,从而得出解这类问题的一种新途径。它较经典的Lagrange乘子法可减少解方程组的维数。
In this paper, a necessary optimality condition of problems with equality constraints is investigated by the implicit function theorem in n-dimensional Euclidean space. A new approach solving these problems is obtained. The number of dimensions of corresponding system of equations is less than the classic Lagrangian multiplier method.
关键词
隐函数定理
等式约束
乘积空间
optimality conditon, equality constraint, implicit function, Euclidean space, Lagrangian multiplier