期刊文献+

基于自由搜索的多用户检测

Multiuser Detector Based On an improved free search algorithm
下载PDF
导出
摘要 自由搜索(FS)算法是一种新的群集智能优化算法,该算法与同类算法相比,全局搜索能力好、收敛速度快,把它应用到CDMA通信系统中抗干扰的关键技术-多用户检测(MUD)中,提出了基于自由搜索算法的多用户检测器(FS_MUD),并将其和基于群集智能典型算法粒子群算法的多用户检测器(PSO_MUD)做比较,仿真结果表明,该FS_MUD在误码率性能、抗远近效应和增加系统容量方面的性能较之PSO_MUD均有明显的提高。 Free search(FS) is a novel swarm intelligence algorithm.Compared with similar algorithms such as Particle Swarm Optimization(PSO),FS has better performance such as avoiding local optima and quick convergence.Apply the FS to the key technique for Code-Division Multiple-Access(CDMA) mobile system which called The Multi-user Detection(MUD),The experimental results indicate that the performance of FS_MUD is more efficient in the BER capability,the near-far resistance and enlarging the system capacity than PSO_MUD.
作者 任诚
出处 《微计算机信息》 2012年第9期467-468,共2页 Control & Automation
关键词 群集智能 自由搜索算法 多用户检测 远近效应 Swarm intelligence Free search(FS) Multi-user Detection near-far resistance
  • 相关文献

参考文献4

二级参考文献21

  • 1黄芳,樊晓平.基于岛屿群体模型的并行粒子群优化算法[J].控制与决策,2006,21(2):175-179. 被引量:41
  • 2SHI Y, EBERHART R. Empirical study of particle swarm optimization [J]. Proceedings of the 1999 Congress on Evolutionary Computation, 1999: 1945-1950.
  • 3M. SENTHIL ARUMUGAM, M. V. C. Rao, Aarthi Chandramohan. A new and improved version of particle swarm optimization algorithm with global - local best parameters [J]. Journal of Knowledge and Information Systems, 2008, 16:331 357.
  • 4KENNEDY J,EBERHART R C.Particle swarm optimization[J].Proc.IEEE International Conference on Neural Networks,1995,4(3):1942-1948.
  • 5KENNEDY J.The particle swarm:Social adaptation of knowledge[C]//Proc IEEE Int.Conf.on Evolutionary Computation.Indianapolis:[s.n.],1997:303-308.
  • 6SHI Y,EBERHART R C.A modified particle swarm optimizer[C]//Proc.of IEEE World Congress on Computational Intelligence.Anchorage:[s.n.],1998:69-73.
  • 7EBERHART R C,SHI Y.Comparing inertia weights and constriction factors in particle swarm optimization[C]//Proc.2000 Congress Evolutionary Computation,San Diego,CA:[s.n.],2000:84-88.
  • 8SHI Y,EBERHART R C.Particle swarm optimization:developments,applications and resources[J].Proc.Congress on Evolutionary Computation,2001,1:81-86.
  • 9CLERC M,KENNEDY J.The particle swarm-explosion,stability,and convergence in a multidimensional complex space[J].IEEE Trans.on Evolutionary Computation.2002,6(1):58-73.
  • 10MENDES R,KENNEDY J,NEVES J.The fully informed particle swarm:simpler,maybe better[J].IEEE Trans.on Evolutinary Comoutation,2004,8(3):204-210.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部