期刊文献+

基于光流与熵统计法的花卉生长视频关键帧提取算法 被引量:5

Key-frame retrieval method based on optical flow and entropy statistic for blooming video
下载PDF
导出
摘要 花卉生长过程原始视频数据量大,冗余信息多。为了获得便于研究人员使用的压缩比高、数据量小、包含丰富生长细节信息、流畅自然、花卉生长过程视频,引入了关键帧提取方法对原始视频进行处理。根据花卉生长过程的特点,选择运动检测相关算法进行测试。对传统的帧间差分法进行了仿真分析,并提出了一种新的基于光流法及运动方向信息熵统计的关键帧提取方法。试验证明,该方法明显优于帧间差分法,在提取相同数量关键帧的情况下,能够更完整的表现花卉运动细节。该研究可为花卉生长过程的动态监测提供参考。 The original video of flower growth process contains large amount of data and plenty of redundance information.In order to obtain the video of flower growth process to facilitate the researchers,which is endowed with high compression ratio,small amount of data,rich growth details information and natural fluency,a key frame extraction method was introduced to process the original video.According to the characteristics of flower growing process,he motion detection algorithm was chosen to take tests on them.Through the simulation analysis of frame difference method,this paper proposed a new key frame extraction method based on optical flow and direction information entropy.Experiment showed that in the case of extracting the same number of key frames,this method can perform details of the flower movement better,which is superior to the frame difference method.
出处 《农业工程学报》 EI CAS CSCD 北大核心 2012年第17期125-130,共6页 Transactions of the Chinese Society of Agricultural Engineering
基金 北京市自然科学基金资助项目(6123035)
关键词 图像处理 光流 关键帧提取 花卉 image processing entropy optical flows key frame retrieval flowers
  • 相关文献

参考文献26

  • 1Costa C, Antonucci F, Pallottino F, et al. Shape analysis of agricultural products: a review of recent research advances and potential application to computer vision[J]. Food and Bioprocess Technology, 2011, 4(5): 673-692.
  • 2李灿灿,孙长辉,王静,李丰果.基于改进的Sobel算子和色调信息的叶脉提取方法[J].农业工程学报,2011,27(7):196-199. 被引量:28
  • 3Ticay-Rivas J R, Del Pozo-Banos M, Travieso C M, et al. Pollen classification based on geometrical, descriptors and colour features using decorrelation stretching method[C]//7th IFIP WG 125 International Conference on Artificial Intelligence Applications and Innovations, Corfu, Greece: Springer New York; 2011 : 342-349.
  • 4毕昆,姜盼,李磊,石本义,王成.基于形态学图像处理的麦穗形态特征无损测量[J].农业工程学报,2010,26(12):212-216. 被引量:30
  • 5张泉.关于植物形态学的思考[J].自然杂志,2000,22(3):180-183. 被引量:2
  • 6Sakamoto T, Shibayama M, Takada E, et al. Detecting seasonal changes in crop community structure using day and night digital images[J].Photogrammetric Engineering and Remote Sensing, 2010; 76(6): 713-726.
  • 7马稚昱,清水浩,辜松.基于机器视觉的菊花生长自动无损监测技术[J].农业工程学报,2010,26(9):203-209. 被引量:22
  • 8淮永建,曾茜.花卉植物形态与生长可视化仿真研究[J].计算机工程与应用,2012,48(8):185-188. 被引量:11
  • 9Liang H, Mahadevan L. Growth, geometry, and mechanics of a blooming lily[J]. Proceedings of the National Academy of Sciences, 2011, 108(14): 5516- 5521.
  • 10Cuntoor N P, CheUappa R. Key frame-based activity representation using antieigenvalues[C]//7th Asian Conference on Computer Vision, ACCV 2006, January 13, 2006 - January 16, 2006; Hyderabad, India: Springer Verlag; 2006, 499-508.

二级参考文献142

共引文献281

同被引文献61

引证文献5

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部