期刊文献+

E凸规划问题解集的刻画 被引量:1

Characterization of solution sets of E-convex programming problems
下载PDF
导出
摘要 考虑一类重要的广义凸规划问题E凸规划,在E凸集中定义了关于E凸函数的E-Gateaux微分概念,证明了E凸函数的E-Gateaux微分的几个特征性质,并利用这些特征性质,提出了E凸规划问题解集的等价刻画,在赋范向量空间中,对于一个目标函数在最优解处E-Gateaux可微的E凸规划问题而言,它的解集是由位于超平面内的可行解组成的,这些可行解的法向量就是目标函数在给定最优解处的E-Gateaux微分。 In this paper, an important class of generalized convex programming problems, E-convex program, was considered. We defined the E-Gateaux differential of E-convex function on the E-convex set, and got some characteristic theorems of the E- Gateaux differential of E-convex function, proposed the equivalent characterizations of the solution sets of E-convex programming problems by using the characteristic theorems. For an E-convex program in a normed vector space with the objective function admitting the E-Gateaux differential at an optimal solution, we showed that the solution set consists of the feasible points lying in the hyperplane whose normal vector equals the E-Gateaux differential.
出处 《运筹学学报》 CSCD 北大核心 2012年第3期75-83,共9页 Operations Research Transactions
基金 国家自然科学基金(No.11001289) 重庆市教委科学技术研究基金资助项目(No.KJ100608)
关键词 E—Gateaux微分 解集刻画 E凸函数 E凸规划 次微分 E-gateaux differential, characterization of solution sets, E-convex func- tion, E-convex program, sub-differential
  • 相关文献

参考文献10

  • 1Youness E A. E-convex sets, E-convex functions, and E-convex programming [J]. Journal of Optimization Theory and Application, 1999, 102(2): 439-450.
  • 2Youness E A. Characterization of efficient solutions of multi-objective E-convex programming problems [J]. Applied Mathematics and Computationm, 2004, 151(3): 755-761.
  • 3Yang X M. On E-convex sets, E-convex functions, and E-convex programming [J]. Journal of Optimization Theory and Application, 2001, 109: 699-704.
  • 4Chen X S. Some properties of semi-E-convex functions [J]. Journal of Mathematics Applied, 2002, 275: 251-262.
  • 5李成林,孔维丽,黄辉.E凸函数的次微分[J].云南大学学报(自然科学版),2006,28(5):369-373. 被引量:7
  • 6景书杰,宋虹颖.E凸函数的方向导数[J].吉林师范大学学报(自然科学版),2009,30(1):15-18. 被引量:2
  • 7Clarke F H, Stem R J. Nonsmooth Analysis and Control Theory [M]. New York: pringer Verlag, 1998.
  • 8Wu Z L, Wu S Y. Characterization of the solution sets of a convex program and a variational inequality problem [J]. Journal of Optimization Theory and Applications, 2006, 130(2): 339- 358.
  • 9Rockafellar R T. Convex Analysis [M]. Princeton: Princeton University Press, 1970.
  • 10景书杰,宋虹颖.E次微分的一些新性质[J].安徽理工大学学报(自然科学版),2009,29(1):72-76. 被引量:1

二级参考文献17

  • 1邵远夫,李成林.Hilbert空间中函数和的次微分规则及应用[J].云南大学学报(自然科学版),2004,26(6):475-478. 被引量:6
  • 2李成林,孔维丽,黄辉.E凸函数的次微分[J].云南大学学报(自然科学版),2006,28(5):369-373. 被引量:7
  • 3YOUNESS E A. E-convex sets,E-convex functions, and E-convex programming[J]. Journal of Optimization Theory and Application, 1999 (102) : 439-450.
  • 4R TYRRELL ROCKAFELLAR. Convex Analysis [M]. Princeton University Press, 1970. 215.
  • 5DIMITRI P. Bertsekas with Angelia Nedic and Asuman E. Ozdaglar[M]. Convex Analysia and Optimization. Tsinghua University Press, 2006 :
  • 6Clarke F H. Necessary conditions for nonsmooth problems in optimal control and the calculus of variationa[D]. Univ. of Washington, 1973.
  • 7Jan Van Tiel. Convex Analysis, An Introductory Text, John Wiley &Sons, 1984.
  • 8Youness E A. E-convex sets, E-convex functions, and E-convex programming[J]. Journal of Optimization Theory and Application, 1999, (102):439 - 450.
  • 9YOUNESS E A. E-convex sets, E-convex functions, and E-convex programming[J }. Journal of Optimization Theory and Applications, 1999, 102 (2) : 439-450.
  • 10CLARKE F H, LEDYAEV Y S, STEM R J, et al. Nonsmooth analysis and control theory[M]. New York: Springer-Verlag,1998.

共引文献7

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部