期刊文献+

基于压缩感知的井下图像压缩 被引量:1

Data Compression of Downhole Image based on Compression Sensing
原文传递
导出
摘要 为了解决石油测井电视图像的实时有效传输和测井系统数据传输率低下的矛盾,提出了一种基于压缩感知的分块图像压缩方法,在满足测井系统的特殊要求,例如器件简单、功耗低、数据储存量小等,同时有效的压缩和重构图像。通过对井下图像的实验,分析压缩然后重构的图像,结果表明采用该方法能在简单的线性测量下得到高压缩比,并且重构后的图像仍能满足测井需要,符合测井系统的要求,提高了井下数据传输率。 To solve the conflicts between the effective real-time transmission of downhole video image and the low data transfer rate of the petroleum logging system, a block image compression algorithm based on compressed sensing is proposed. It could effectively compress and reconstruct image while meeting all particular requirements of the petroleum logging system, such as simplified device, low power consumption, small data storage. The experiment on the downhole image and the analysis on the compressed and constructed image indicate that, with this algorithm, a high compression ratio could be obtained, the constructed image could still meet the demand of logging system, and the downhole data transfer rate could be raised.
出处 《通信技术》 2012年第9期126-128,133,共4页 Communications Technology
关键词 压缩感知 图像压缩 图像分块 compression sensing image compression image block
  • 相关文献

参考文献10

  • 1DONOHO D. Compressed Sensing[J]. IEEE Trans on Information Theory, 2006, 52(04):1289-1306.
  • 2LU Gan. Block. Compressed Sensing of Natural Images [M]. UK:Confon Digital Processing, Cardiff, 2007.
  • 3石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:712
  • 4DONOHO D, TSAIG Y. Extensions of Compressed Sensing [J].Signal Processing. 2006,86(03) :533-548.
  • 5高超,李生红,唐俊华.基于压缩感知解码的网络编码技术[J].通信技术,2012,45(2):42-44. 被引量:1
  • 6CANDfeS E.Compressive Sampling[J]. Proceedings of the International Congress of Mathematicians, 2006(03) :1433-1452.
  • 7王蓟翔,张扬.基于矩阵分解的压缩感知算法研究[J].通信技术,2011,44(6):138-140. 被引量:10
  • 8CANDfiS E,ROMBERG J. Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions [J]. Foundations of Comput, 2006, 6(02) :227-254.
  • 9CANDES E, ROMBERG J. Practial Signal Recovery From Random Projections [EB/OL]. (2004-11-02) [2012-02-02]. http://www. acm. caltech.. edu/emmanuel/papers/Pra ctialRecovery/pdf.
  • 10王国华,陈宏,俞一彪,芮贤义.基于DCT系数小波重组的图像压缩算法[J].信息安全与通信保密,2006,28(4):100-102. 被引量:2

二级参考文献97

  • 1王东华,周源华,王嘉.基于DCT的嵌入式图像编码[J].计算机工程,2004,30(11):27-28. 被引量:2
  • 2张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 3R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 4Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 5Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 6E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 7E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 8Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 9G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 10V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.

共引文献720

同被引文献9

  • 1Donoho,David L.Compressed sensing. IEEE Transactions on Information Theory . 2006
  • 2Elad, Michael,Aharon, Michal.Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing . 2006
  • 3Needell, Deanna,Vershynin, Roman.Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit. IEEE Journal on Selected Topics in Signal Processing . 2010
  • 4Charles Dossal,Marie-Line Chabanol,Gabriel Peyré,Jalal Fadili.??Sharp support recovery from noisy random measurements by ? 1 -minimization(J)Applied and Computational Harmonic Analysis . 2011 (1)
  • 5ABOLGHASEMI J D,SANEI S.A robust approachfor optimization of the measurement matrix incompressed sensing. International Workshop onCognitive Information Processing . 2010
  • 6Jarvis Haupt,Waheed U. Bajwa,Gil Raz,Robert Nowak.Toeplitz compressed sensing matrices with applications to sparse channel estimation. IEEE Transactions on Information Theory . 2010
  • 7Tao Wan,Zengchang Qin.??An application of compressive sensing for image fusion(J)International Journal of Computer Mathematics . 2011 (18)
  • 8金坚,谷源涛,梅顺良.压缩采样技术及其应用[J].电子与信息学报,2010,32(2):470-475. 被引量:78
  • 9王红梅,严军,牛涛,张之江.一种利用相关性优化压缩感知测量矩阵的方法[J].电子测量技术,2012,35(11):116-119. 被引量:9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部