期刊文献+

基于隐马尔科夫模型的机床轴承热误差状态表征 被引量:3

A Characterization of Thermal Error for Machine Tools Bearing Based on HMM
下载PDF
导出
摘要 热误差对工件精度有重大影响。引入HMM对机床轴承热误差表征进行实测研究,通过测量轴承的温度以及轴承的热误差,并划分相应状态,研究其相关性,建立相应的HMM,并对HMM中相应算法进行了实例计算。HMM优化后,用易于观测的温度信号表征难于观测的热误差。结果表明,该方法表征的热误差状态与实际测量的热误差状态一致。 The working accuracy of machine tools is decisively affected by thermal error. HMM was introduced to make actual measurement research to thermal error of machine tool beating. The temperature and thermal error of bearing were measured and the states were divided. A corresponding HMM was established, and example calculations by corresponding algorithms of HMM were eartied out. After HMM was optimized, thermal error difficult to observe can be characterized by temperature signal easy to observe. The results show that the thermal error state characterized by this method is consistent with measure one.
作者 谢锋云
出处 《机床与液压》 北大核心 2012年第17期31-34,共4页 Machine Tool & Hydraulics
基金 江西省自然科学基金资助项目(20114BAB206003) 载运工具与装备教育部重点实验室资助项目(09JD03)
关键词 HMM 温度 热误差 机床 HMM Temperature Thermal error Machine tools
  • 相关文献

参考文献8

  • 1BRYAN James B. International Status of Thermal Error Research [ J ]. Metals, Ceramics and Materials, 1967 (7) : 25 - 50.
  • 2RAMESH R, MANNAN M A, POO A N. Error Compensation in Machine Tools A Review: Part I: Geometric, Cutting-force Induced and Fixture Dependent Errors [ J ]. International Journal of Machine Tools & Manufacture, 2000,40 : 1235 - 1256.
  • 3RAMESH R, MANNAN M A, POO A N. Error Compensation in Machine Tools A Review : Part II : Thermal Errors [ J ]. International Journal of Machine Tools & Manufacture, 2000,40 : 1257 - 1284.
  • 4RABINER Lawre R. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition [ C ]//Proceedings of the IEEE, 1989:257 - 286.
  • 5章婷,刘世豪.数控机床热误差补偿建模综述[J].机床与液压,2011,39(1):122-127. 被引量:28
  • 6尹玲,陈吉红,李海洲,毛新勇,谭波,刘国.基于总线的数控系统嵌入式热误差补偿实现方法[J].机床与液压,2011,39(9):5-7. 被引量:2
  • 7JIN Chao,WU Bo,HU Youmin.Wavelet Neural Network Based on NARMA-L2 Model for Prediction of Thermal Characteristics in a Feed System[J].Chinese Journal of Mechanical Engineering,2011,24(1):33-41. 被引量:8
  • 8XIA Junyong, HU Youmin, WU Bo, et al. Research on Thermal Dynamics Characteristics and Modeling Approach of Ball Screw [ J ]. International Journal of Advance Manufacture Technology,2009,43 (5/6) :421 - 430.

二级参考文献61

  • 1傅建中,陈子辰.精密机械热动态误差模糊神经网络建模研究[J].浙江大学学报(工学版),2004,38(6):742-746. 被引量:37
  • 2周计明,齐乐华,陈国定.热成形中金属本构关系建模方法综述[J].机械科学与技术,2005,24(2):212-216. 被引量:46
  • 3潘淑微.数控车床热误差鲁棒性建模的研究现状[J].工具技术,2007,41(5):10-14. 被引量:7
  • 4Jedrzejewski J, Modrzycki W. A new approach to modeling thermal behavior of a machine tool under service conditions [J]. Annals of the CIRP,1992,41 ( 1 ) :455 -458.
  • 5Chen J S, Yan J X, Ni J, et al. Real-time compensation for time-variant volumetric errors on a machining centre [ J ]. ASME Trans Journal of Engineering for Industry, 1993, 115:472 -479.
  • 6Srivastava A K, Veldhuis S C, Elbestawi M A. Modelling geometric and thermal errors in a five-axis CNC machine tool [ J ]. International Journal of Machine Tools and Manufacture, 1995,35 (9) : 1321 - 1339.
  • 7Wang Yiding, Zhang Guoxiong, Moon Kee S, et al. Compensation for the thermal error of a multi-axis machining center [ J ]. Journal of Materials Processing Technology, 1998,75 : 45 - 53.
  • 8陈子辰.热敏感度和热耦合度研究[C]//1992年全国机床热误差控制和补偿研究会议论文集,1992:49-53.
  • 9Lee Jin-Hyeon, Lee Jae-Ha,Yang Seung-Han. Thermal error modeling of a Horizontal machining center using fuzzy logic strategy [ J ]. Journal of Manufacturing Processes, 2001,3 (2) : 120 - 127.
  • 10Ramesh R, Mannan M A, Poo A N, et al. Thermal error measurement and modeling in machine tools. Part II. Hybrid Bayesian network-support vector machine model[ J ]. International Journal of Machine Tool & Manufacture, 2003,43:405 - 419.

共引文献34

同被引文献23

  • 1刘国伟,尹洪宗,何锡文.不确定度评定中离群值的检验及计算机编程[J].冶金分析,2004,24(4):63-66. 被引量:14
  • 2XIE F Y. A Method of State Recognition in Machining Process Based on Wavelet and Hidden Markov Model. In Proceedings of the ISMR 2012,2012:639 - 643.
  • 3Owsley L M, Atlas L E, Bernard G D. Self-Organizing Feature Maps and Hidden Markov Models for Machine- Tool Monitoring. IEEE Transactions on Signals Process- ing, 1997,45:2787 - 2798.
  • 4Sick B. On-Line and Indirect Tool Wear Monitoring in Turning with Artificial Neural Networks: A review of more than a decade of research. Mechanical Systems and Signal Processing, 2002, 16:487 - 546.
  • 5Ertunc H M,Loparo K A, et al. Real time monitoring of tool wear using multiple modeling method [ C ]//In Pro- ceedings of the IEMDC 2001. 2001:687 -691.
  • 6Dey S, Stori J A, Dey S, et al. A Bayesian Network Ap- proach to Root Cause Diagnosis of Process Variations [ J ]. International Journal of Machine Tools & Manufac- ture, 2004, 45:75-91.
  • 7Yao Z H, Mei D Q, Chen Z C. On-line chatter detection and identification based on wavelet and support vector machine [ J ]. Journal of Materials Processing Technolo- gy, 2010, 210:713-719.
  • 8Bin G F, Gao J J, et al. Early fault diagnosis of rotating machinery based on wavelet packets--Empirical mode decomposition feature extraction and neural network. Me- chanical Systems and Signal Processing, 2012, 27:696 - 711.
  • 9公安部交通管理局.2013年道路交通安全形势总体平稳[EB/OL]. [2014 - 01 -28]. http;//www. mps. gov.cn/nl6/nl252/nl837/n2557/3986343.html.
  • 10Ohashi K,YAMAGUCHI T,Tamai I. Humane automotivesystem using driver intention recognition[ C J//SICE an-nual conference. USA : [ s. n. ] ,2004 : 1164 - 1167.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部