期刊文献+

基于复杂背景的彩色图像中维吾尔文字切分 被引量:4

Uyghur Text Segmentation in Color Image with a Complex Background
下载PDF
导出
摘要 沿着基线并具有大量附加部分书写是维吾尔文一大特点,这些特点使复杂背景的彩色图像中维吾尔文字行与字的切分和识别成为一个既困难又有趣的问题。本文首先对复杂彩色图像进行灰度化,其次将彩色图像转换为灰度化的边缘图像,再对图像进行局域二值化,然后进行区域检测和边缘调整,初步实现了图像中维吾尔文字行的定位,紧接着根据定位结果从图像中切分出文字行,统计切分后的文字行在水平和垂直方向上的像素累计情况,查找最佳切分点,分离出文字行中的字母独立形式或几个字母连成的连体字母段。实验结果表明,文字行的切分准确率达到96%,字切分准确率达到98%以上。 Writing along the baseline and with a large number of additions is one major characteristic of Uyghur, therefore the line and word segmentation and recognition of Uyghur in a complex color image becomes a difficult but interesting problem. In the paper, firstly,the complex color image is changed to be a gray-scale image. Secondly,the color image is changed to be a grayscale edge image and further a binary image of partial area. Then after regional detection and edge-adjusting, the line position of the Uyghur is located. According to the line position,the text line is obtained from the image. Finally,based on the segmentation result,the accumulation of pixels along the horizontal and vertical line is analyzed to find the best cut-off points and separate out the individual letter or the letter section contains several letters in a text line. Experimental results show that the line segmentation accuracy can reach 96% and the word segmentation accuracy can reach 98%.
出处 《计算机工程与科学》 CSCD 北大核心 2012年第9期98-103,共6页 Computer Engineering & Science
基金 国家自然科学基金资助项目(60865001) 新疆少数民族特培计划科研资助项目(200923118)
关键词 复杂彩色图像 区域检测 文字行切分 字切分 complex color images region detection text line segmentation word segmentation
  • 相关文献

参考文献4

二级参考文献28

  • 1田春娜,高新波,哈力旦.A.一种基于相对模糊连通度的交互式序列图像快速分割算法[J].电子与信息学报,2005,27(10):1549-1554. 被引量:4
  • 2胡小锋,周勇,叶庆泰.复杂背景彩色图像中的文字分割[J].光学技术,2006,32(1):141-143. 被引量:12
  • 3Lyu M R, Song Jiqiang. A Comprehensive Method for Multilingual Video Text Detection, Localization, and Extraction[J]. 1EEE Trans. on Circuits and Systems for Video Technology, 2005, 15(2): 243- 255.
  • 4Gllavata J, Ewerth R, Freisleben B. A Text Detection, Localization and Segmentation System for OCR in lmages[C]//Proc, of the 6th International Symposimn on Multimedia Software Engineering. [S. l.]: IEEE Press, 2004: 216-224.
  • 5Jung K, Kim K I, Jain A K. Text Information Extraction in Images and Video: A Survey[J ]. Pattern Recognition, 2004, 37(5): 977-997.
  • 6Adnan Amin, and Jean F. Mari. Machine recognition and correction of printed Arabic text [J]. IEEE Transactions on Systems, Man and Cybernetics, 1989, 19(5):1300- 1306.
  • 7Katerin Romeo-Pakker, H. Miled, and Yves Lecourtier. A new approach for Latin / Arabic character segmentation [A]. Proceedings of the 3rd International Conference on Document Analysis and Recognition [C]. Montréal, Cana da, 1995, 874- 877.
  • 8H. Al-Muallim, and S. Yamaguchi. A method of recognition of Arabic cursive handwriting [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, 9(5):715- 722.
  • 9Anthony Cheung, Mohammed Bennamoun, and Neil W. Bergmann. An Arabic optical character recognition system using recognition-based segmentation [J]. Pattern Recognition, 2001, 34(2):215- 233.
  • 10Issam Bazzi, Richard Schwartz, and John Makhoul. An omnifont open-vocabulary OCR system for English and Arabic [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(6):495- 504.

共引文献36

同被引文献50

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部