摘要
本文针对网络学习中如何个性化使用资源库的问题,从解决用户真实需求获取的瓶颈问题出发,通过分析此类应用环境下资源特性和用户特性,引入资源分布矩阵和偏好矢量概念来表征个性化特性,进而构建用户属性结构特征模型。然后采用用户属性结构和资源特性描述之间的精准检索,以及针对学习资源实施多重相关度排序和定位,设计验证了一个基于JADE平台的个性化资源检索系统。模拟实验证明,随着用户检索次数的增加,用户属性模型不断更新和完善,资料的个性化匹配度良好,能够较好地处理需求获取的瓶颈,达到实施个性化学习的目的。
Recommending and distributing individualized learning resources to students has rarely been supported by distance learning systems. This paper fills the gap and presents an individualized resource retrieval system based on JADE platform that provides recommended learning resources to different users. Resource distribution matrix and user's interest vector were created for user attribute model to match and rank resources in the system. The preliminary experiments with the prototype indicated that there was an increase in the precision of individualized resources retrieved as the model improved with the accumulation of users' queries.
出处
《计算机工程与科学》
CSCD
北大核心
2012年第9期166-173,共8页
Computer Engineering & Science
基金
上海市教委重点科研项目(06ZZ91)
关键词
个性化
用户属性模型
精准检索
主动服务
individualized character
user attribute model
precise retrieval
positive scheduling