期刊文献+

基于LMS自适应算法的图像去模糊研究 被引量:4

Research on Image Debluring Based on Adaptive Least Mean Square Algorithm
下载PDF
导出
摘要 传统单幅图像去模糊方法需要稀疏先验约束,导致计算量较大。为此,在自适应最小均方误差(LMS)算法的基础上,提出一种点扩散函数(PSF)估计方法。利用模糊图像得到有效突出边缘,作为自适应滤波器的输入信号,并将模糊图像作为滤波器的期望信号,用以估计PSF。在非盲去卷积过程中,采用各项异性正规化方法对清晰图像进行约束,以减少恢复图像的振铃效应。实验结果表明,该方法不需要先验约束,对运动和非运动模糊图像均可适用,在保留图像细节的同时能抑制平滑区域的噪声。 The traditional method to deblur single blurred image required a variety of sparse priori constraints, in order to solve this problem, an adaptive Least Mean Squarc(LMS) error algorithm for getting the Point Spread Function(PSF) is proposed. This algorithm does not require priori constraints, in the case of only a blurred image, First, get an effective strong edge of the latent image as the input signal of the adaptive filter, while blurred image as the desired signal, then estimate the PSF; In the non-blind deconvolution process, in order to reduce ring artifact of the restored image, an anisotropic regularization constraint term on the latent image is adopted. The experimental results show that the PSF estimation method not only applies to motion blur image, but also applies to defocus blur image and uniform blur image.
出处 《计算机工程》 CAS CSCD 2012年第17期226-231,共6页 Computer Engineering
基金 国家自然科学基金资助项目(61062014) 广西自然科学基金资助项目(桂科自0991280)
关键词 双边滤波 冲击滤波 自适应LMS滤波 点扩散函数估计 图像恢复 最大似然估计 各项异性正规化 bilateral filtering shock filtering adaptive Least Mean Square(LMS) filtering Point Spread Function(PSF) estimation imagerestoration maximum likelihood estimation anisotropic regularization
  • 相关文献

参考文献12

  • 1Fergus R, Singh B, Hertzmann A, et al. Removing Camera Shake from a Single Photograph[C]//Proc. of ACM SIGGRAPH'06. Boston, USA: ACM Press, 2006.
  • 2Shah Qi, Jia Jiaya, Agarwala A. High-quality Motion Deblurring l?om a Single lmage[C]//Proceedings of ACM SIGGRAPH'08. Los Angeles, USA: ACM Press, 2008.
  • 3Cai Jianfeng, Ji Hui, Liu Chaoqiang, et al. Blind Motion Deblurring from a Single Image Using Sparse Approxi- mation[C]//Proceedings of CVPR'09. Miami Beach, USA: IEEE Press, 2009.
  • 4Joshi N, Szeliski R, Kriegman D J. PSF Estimation Using Sharp Edge Prediction[C]//Proceedings of CVPR'08. Anchorage, USA:IEEE Press, 2008.
  • 5Cho S, Lee S. Fast Motion Deblurring[J]. ACM Transactions on Graphics, 2009, 28(5).
  • 6Joshi N. Enhancing Photographs Using Content-specific Image Priors[D]. San Diego, USA: University of California, 2008.
  • 7Xu Li, Jia Jiaya. Two-phase Kernel Estimation for Robust Motion Deblurring[C]//Proceedings of ECCV'10. Crete, Greece: [s. n.], 2010.
  • 8Yuan Lu, Sun Jian, Quan Long, et al. Progressive Inter-scale and lntra-scale Non-blind Image Deconvolution[J]. ACM Trans. On Graphics, 2008, 27(5).
  • 9Hong Hanyu, Park I K. Single-image Motion Deblurring Using Adaptive Anisotropic Regularization[J]. Optical Engineering, 2010, 49(9).
  • 10Tomasi C, Manduchi R. Bilateral Filtering for Gray and Color Images[C]//Proceedings of International Conference on Computer Vision. Bombay,. India: IEEE Press, 1998.

同被引文献24

  • 1刘树才,岳建华,李志聃.直接拟合视电阻率法自动反演技术及程序设计[J].中国煤田地质,1994,6(4):86-89. 被引量:1
  • 2KANG XIAO,ZHU WEI,LI KEJIE. A new mixed noise filtering method for laser image[A].201 .11-20.
  • 3WU J,TANG C. A new filter for the removal of random valued impulse noise from highly corrupted images[J].International Joumal of Electronics and Cmmunications,2012,(10):847-854.
  • 4AWAD A S. Standard deviation for obtaining the optimal direction in the removal of impulse noise[J].IEEE Signal Processing Leuers,2011,(07):407-410.
  • 5MEENAVATHI M B,RAJESH K. Voherra filtering techniques for removal of Gaussian and mixed Gaussian-impulse noise[J].International Journal of Applied Mathematics and Computer Sciences,2007,(01):51-56.
  • 6MATEO J,TORRES A GARCIA M A. Robust Voherra Filter Design for Enhancement of Electroencephalogram Signal Processing[J].{H}CIRCUITS SYSTEMS AND SIGNAL PROCESSING,2013,(01):233-253.
  • 7KOHLI AMIT KUMAR,RAI AMR1TA. Numeric variable forgetting factor RLS algorithm for second-order Volterra filtering[J].{H}CIRCUITS SYSTEMS AND SIGNAL PROCESSING,2013,(01):223-232.
  • 8姜春苗,周祚峰.去除图像中高斯-脉冲噪声的有效方法[J].计算机工程与应用,2009,45(24):183-185. 被引量:11
  • 9毕国堂,王晓辉,周艳,唐权华.基于粗集的图像混合噪声滤波算法[J].计算机工程与设计,2009,30(21):4898-4900. 被引量:10
  • 10刘立峰,汤建华.基于自适应Volterra的高斯噪声图像滤波算法[J].光电子.激光,2009,20(12):1663-1666. 被引量:9

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部