期刊文献+

基于椭圆曲线的二元伪随机序列构造与分析 被引量:1

Construction and Analysis of Binary Pseudorandom Sequences Based on Elliptic Curve
下载PDF
导出
摘要 基于有限域p上的椭圆曲线,利用乘法逆构造一类二元伪随机序列,通过素域上椭圆曲线的指数和,计算该类伪随机序列的一致分布测度和k阶相关测度。结果表明,周期为N的二元伪随机序列一致分布测度的上界为p1/2lbplbN,k阶相关测度的上界为p1/2(lbp)klbN,2个测度的数量级都是O(N),说明该类序列具有很好的伪随机性质。 One family of pseudorandom binary sequences are constructed from elliptic curves on finite field by using the multiplicative inverse.The properties of pseudorandom binary sequences are studied including the well-distribution measure and the correlation measure of order k.Through exponential sums along elliptic curves,the well-distribution measure and the correlation measure of order k are computed.The upper bound of well-distribution measure is p1/2lbplbN.The upper bound of correlation measure of order k is p1/2(lbp)klbN.Their magnitudes are O(N),which indicates that this family of sequences have good randomness.
出处 《计算机工程》 CAS CSCD 2012年第18期100-102,共3页 Computer Engineering
基金 国家自然科学基金资助项目(61003291) 国家"973"计划基金资助项目(2007CB807902) 全国优秀博士学位论文作者专项基金资助项目(FANEDD-2007B74)
关键词 伪随机序列 椭圆曲线 指数和 一致分布测度 k阶相关测度 pseudorandom sequence; elliptic curve; exponential sum; uniform distribution measure; correlation measure of order k
  • 相关文献

参考文献10

  • 1Kaliski B. A Pseudorandom Bit Generator Based on Elliptic Logarithms[C]//Proc. of CRYPTO’86. Berlin, Germany: Springer- Verlag, 1986.
  • 2Gong Guang, Berson T, Stinson D. Elliptic Curve Pseudorandom Sequence Generator[EB/OL]. [2011-07-12]. http://www.cacr.math. uwaterloo.ca.
  • 3Gong G, Lam C C Y. Linear Recursive Sequences over Elliptic Curves[C]//Proc. of SETA’01. [S. l.]: Spring-Verlag, 2001.
  • 4Hess F. Shparlinski I. On the Linear Complexity and Multi- dimensional Distribution of Congruential Generators over Elliptic Curve[J]. Designs, Codes and Cryptography, 2005, 35(1): 111-117.
  • 5Hu Honggang, Hu Lei, Feng Dengguo. On a Class of Pseudorandom Sequences from Elliptic Curves over Finite Fields[J]. IEEE Transactions on Information Theory, 2007, 53(2): 2598-2605.
  • 6Chen Zhixiong. Elliptic Curve Analogue of Legendre Sequences[J]. Monatshefte für Mathematik, 2008, 154(3): 1-10.
  • 7Merai L. Construction of Large Families of Pseudorandom Binary Sequences[J]. The Ramanujan Journal, 2009, 18(7): 341-349.
  • 8Mauduit C, Sarkozy A. On Finite Pseudorandom Binary Sequences I: Measures of Pseudorandomness, the Legendre Symbol[J]. Acta Arithmetica, 1997, 82(12): 365-377.
  • 9Shparlinski I. E. Cryptographic Applications of Analytic Number Theory: Complexity Lower Bounds and Pseudorandomness[M]. [S. l.]: Birkhauser, 2003.
  • 10Kohel D, Shparlinski I E. Exponential Sums and Group Generators for Elliptic Curves over Finite Fields[C]//Proc. of Algorithmic Number Theory Symposium. [S. l.]: Springer-Verlag, 2000.

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部