期刊文献+

基于CUDA的拉普拉斯边缘检测算法 被引量:6

Laplacian Edge Detection Algorithm Based on CUDA
下载PDF
导出
摘要 拉普拉斯边缘检测算法常用于去除CCD天文图像中的宇宙射线噪声,但其串行算法计算复杂度较高。为此,分析拉普拉斯边缘检测算法的并行性,在统一计算设备架构(CUDA)并行编程环境下,提出一种基于CUDA的拉普拉斯边缘检测图形处理单元(GPU)并行算法。分割天文图像得到多幅子图,根据GPU的硬件配置设定Block和Grid的大小,将子图依次传输到显卡进行并行计算,传回主存后拼接得到完整的图像输出。实验结果表明,图像尺寸越大,该并行算法与串行算法相比具有的速度优势越大,可获得10倍以上的加速比。 Laplacian edge detection algorithm is widely used in the removal of cosmic ray noise in the CCD astronomical images,but it has higher computation complexity of single CPU.To solve this problem,this paper proposes a parallel Laplacian edge detection algorithm with Graphic Processor Unit(GPU) based on Compute Unified Device Architecture(CUDA) by analyzing the parallelism of Laplacian edge detection.The main algorithm running on the main CPU is responsible for split the astronomical image into some subgraphs.Then it sets Block and Grid size according to the GPU hardware configuration,and transfers the subgraph to graphics card for parallel computing.Finally it retrieve the processed subgraph to main memory and joining together to get complete image output.Experimental results show that,with the image size increases,the speed advantage of the parallel algorithm is greater than the serial algorithm,and it obtains more than ten times speedup measured.
出处 《计算机工程》 CAS CSCD 2012年第18期190-193,共4页 Computer Engineering
基金 国家自然科学基金资助项目(10973007) 广东省部产学研结合引导基金资助项目(2011B090400490) 广州市动漫产业发展基金资助项目(2060404)
关键词 拉普拉斯边缘检测算法 图形处理单元 统一计算设备架构 并行处理 天文图像 宇宙射线 Laplacian edge detection algorithm; Graphic Processor Unit(GPU); Compute Unified Device Architecture(CUDA); parallel processing; astronomical image; cosmic ray
  • 相关文献

参考文献8

  • 1van Dokkum P G. Cosmic-ray Rejection by Laplacian Edge Detection[J]. Publications of the Astronomical Society of the Pacific, 2001, 113(789): 1420-1427.
  • 2刘婷婷,彭青玉.消除CCD图像中宇宙射线的算法的比较[J].天文研究与技术,2010,7(2):140-149. 被引量:2
  • 3Mighell K J. CRBLASTER: A Parallel-processing Computational Framework for Embarrassingly-Parallel Image-analysis Algorithms[J]. Publications of the Astronomical Society of the Pacific, 2010, 122(896): 1236-1245.
  • 4Mighell K J. CRBLASTER: A Fast Parallel-processing Program for Cosmic Ray Rejection[C]//Proceedings of Advanced Software and Control for Astronomy II. Marseille, France: SPIE, 2008.
  • 5孟小华,刘坚强.AVS标准中整数DCT变换的CUDA并行算法[J].微计算机应用,2011,32(11):40-46. 被引量:1
  • 6Bolz J, Farmer I, Grinspun E, et al. Sparse Matrix Solvers on the GPU: Conjugate Gradients and Multigrid[J]. ACM Transactions on Graphics, 2003, 22(3): 917-924.
  • 7Gonzalez R C, Woods R E. Digital Image Processing[M]. 3rd ed. Upper Saddle River, USA: Prentice-Hall, 2002.
  • 8Wells L A, Bell D J. Cleaning Images of Bad Pixels and Cosmic Rays Using IRAF[EB/OL]. [2011-12-02]. http://iraf.noao.edu/ docs/recommend.html.

二级参考文献14

  • 1苏飞,王兆华.一种快速DCT算法的研究[J].天津通信技术,2000(4):6-7. 被引量:3
  • 2郑玉,刘文杰,高文.AVS整数DCT变换和量化方法的设计和实现[J].淮海工学院学报(自然科学版),2006,15(3):22-25. 被引量:5
  • 3GonzalezRC,WoodsRE.数字图像处理[M].阮秋琦,阮宇智,译.北京:电子工业出版社,2007:270-273.
  • 4Windhorst R A , Franklin B E, Neuschaefer L W. Cosmic rays in multi-orbit images with the HST wide field planetary camera 2 [J]. PASP, 1994, 106: 798.
  • 5Zhu Z Q, Ye z F. Detection of cosmic-ray hits for single spectroscopic CCD images [J]. PASP, 2008, 120(869) : 814 -820.
  • 6Rhoads J E. Cosmic-ray rejection by linear filtering of single images [J]. PASP, 2000, 112 (771) : 703 -710.
  • 7Van Dokkum P G. Cosmic-ray rejection by Laplacian edge detection [J]. PASP, 2001, 113 (789) : 1420 - 1429.
  • 8Pych W. A fast algorithm for cosmic-ray removal from single images [J]. PASP, 2004, 116 (816): 148-153.
  • 9Garnett R , Huegerich T , Chui C, et al. A universal noise removal algorithm with an impulse detector [ J]. IEEE T Image Processing, 2005, 14(11) : 1747 -1754.
  • 10Wells L A , Bell D J. Cleaning images of bad pixels and cosmic rays using IRAF. 1994.

共引文献1

同被引文献56

引证文献6

二级引证文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部