期刊文献+

光纤光栅主动稳频的短直线腔单频光纤激光器 被引量:14

Short Linear Cavity Single-Frequency Fiber Laser with Active Frequency Stabilization by Fiber Bragg Grating
原文传递
导出
摘要 利用1.8cm长的Er3+/Yb3+共掺磷酸盐玻璃光纤作为增益介质制作了一个可调谐的短直线腔窄线宽单偏振单纵模光纤激光器。其谐振腔反射镜由高反射率的光纤布拉格光栅(FBG)和低反射率的保偏光纤FBG构成,使用976nm单模半导体激光器作为抽运源。当进入谐振腔的抽运功率为360mW时获得了输出功率65mW,信噪比大于70dB,线宽约为3kHz,偏振消光比达到40dB的激光输出。另外,通过使用压电陶瓷(PZT)调节增益光纤的长度实现了激光波长的电调谐,其调谐斜率约为14.2 MHz/V。采用边频锁定的方式进行主动稳频,使得激光输出的长期频率波动从25MHz/10s减少到了2.5MHz/h,从而实现了全光纤结构的高功率、高频率稳定性的单频光纤激光器。 A short-linear-cavity all-fiber laser configured with 1.8 cm Er3+/Yb3+ co-doped phosphate glass fiber is demonstrated experimentally with single frequency and high frequency stabilization.The fiber laser is composed of a high-reflectivity fiber Bragg grating(FBG) and a polarization-maintaining FBG.The pump is from a semiconducter laser of single mode at 976 nm.When the pump power into the cavity is 360 mW,the output power of the laser reaches more than 65 mW;the signal-to-noise ratio is higher than 70 dB;the laser linewidth is about 3 kHz and the polarization extinction ratio is about 40 dB.Moreover,the length of the active fiber is tuned by a piezoelectric transducer(PZT),and the laser frequency tunable slope is 14.2 MHz/V.Then the laser frequency is stabilized on FBG by using side frequency locking method.The long term frequency fluctuation is reduced from 25 MHz/10 s to 2.5 MHz/h.
出处 《中国激光》 EI CAS CSCD 北大核心 2012年第9期19-24,共6页 Chinese Journal of Lasers
基金 国家自然科学(NSAF联合)基金(11076028) 中国科学院创新基金(CXJJ-11-M16) 山东信息通信技术研究院引进海内外高层次人才项目联合资助课题
关键词 激光器 单频 光纤布拉格光栅 Er3+/Yb3+共掺磷酸盐玻璃光纤 lasers single frequency fiber Bragg grating Er^3+/Yb^3+ co-doped phosphate glass fiber
  • 相关文献

参考文献16

  • 1A. Liem, J. Limpert, H. Zellmer et al.. 100-W single-frequency master-oscillator fiber power amplifier[J]. Opt. Lett., 2003, 28(17): 1537~1539.
  • 2F. Lienhart, S. Boussen, O. Carraz et al.. Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm[J]. Appl. Phys. B, 2007, 89(2-3): 177~180.
  • 3M. Dobbs, W. Krabill, M. Cisewski et al.. A multi-functional fiber laser lidar for earth science & exploration[C]. Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, 2009. CFJ5.
  • 4J. E. Koroshetz. Fiber lasers for lidar[C]. Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, 2005. OFJ4.
  • 5W. H. Loh, B. N. Samson, L. Dong et al.. High performance single frequency fiber grating-based erbiumytterbium-codoped fiber lasers[J]. J. Lightwave Technol., 1998, 16(1): 114~118.
  • 6C. Spiegelberg, J. H. Geng, Y. D. Hu et al.. Low-noise narrow-linewidth fiber laser at 1550 nm[J]. J. Lightwave Technol., 2004, 22(1): 57~62.
  • 7T. Qiu, S. Suzuki, A. Schulzgen et al.. Generation of watt-level single-longitudinal-mode output from cladding-pumped short fiber lasers[J]. Opt. Lett., 2005, 30(20): 2748~2750.
  • 8A. Schulzgen, L. Li, V. L. Temyanko et al.. Single-frequency fiber oscillator with watt-level output power using photonic crystal phosphate glass fiber[J]. Opt. Express, 2006, 14(16): 7087~7092.
  • 9M. Leigh, W. Shi, J. Zong et al.. High peak power single frequency pulses using a short polarization-maintaining phosphate glass fiber with a large core[J]. Appl. Phys. Lett., 2008, 92(18): 181108.
  • 10S. H. Xu, Z. M. Yang, Z. M. Feng et al.. Gain and noise characteristics of single-mode Er3+/Yb3+ co-doped phosphate glass fibers[C]. 2nd IEEE International Nanoelectronics Conference, 2008, 1-3: 633~635.

二级参考文献8

  • 1Ch. Spiegelberg, J. Geng, Y. Hu et al.. Compact 100 mW fiber laser with 2 kHz linewidth [C]. Optical Fiber and Communications Conference, 2003. PD45.
  • 2Osamu Ishida. Delayed-self heterodyne measurement of laser frequency fluctuations [J]. J. Lightwave Technol. , 1991, 9 (11) : 1528- 1533.
  • 3A.亚力夫.现代通信电子学[M].第五版.陈鹤鸣,施伟华,张力等译,北京:电子工业出版社,2004.306.
  • 4http://detail. cn. china. cn/provide/detail, 1398854940. html.
  • 5K. P. Koo, A. D. Kersey. Fiber laser sensor with ultra high strain resolution using interferometric interrogation [J]. Electron. Lett. , 1995, 31(14) :1180-1182.
  • 6肖浩,李芳,王永杰,刘丽辉,刘育梁.高分辨率光纤激光传感系统[J].中国激光,2008,35(1):87-91. 被引量:26
  • 7潘政清,孟莉,叶青,蔡海文,瞿荣辉.铒镱共掺磷酸盐玻璃光纤激光器实现100mW单频输出[J].中国激光,2008,35(12):1996-1996. 被引量:2
  • 8薛冬,楼祺洪,周军,叶震寰,孔令峰.窄线宽光纤激光器进展[J].激光与光电子学进展,2004,41(5):31-35. 被引量:4

共引文献5

同被引文献156

引证文献14

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部